File size: 14,943 Bytes
35cad43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
import imageio
import numpy as np
from PIL import Image
import cv2
from omegaconf import OmegaConf
from skimage.metrics import structural_similarity as ssim
from collections import deque

import torch
import gc
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available

from transformers import CLIPVisionModelWithProjection

from models.guider import Guider
from models.referencenet import ReferenceNet2DConditionModel
from models.unet import UNet3DConditionModel
from models.video_pipeline import VideoPipeline

from dataset.val_dataset import ValDataset, val_collate_fn

def load_model_state_dict(model, model_ckpt_path, name):
    ckpt = torch.load(model_ckpt_path, map_location="cpu")
    model_state_dict = model.state_dict()
    model_new_sd = {}
    count = 0
    for k, v in ckpt.items():
        if k in model_state_dict:
            count += 1
            model_new_sd[k] = v
    miss, _ = model.load_state_dict(model_new_sd, strict=False)
    print(f'load {name} from {model_ckpt_path}\n - load params: {count}\n - miss params: {miss}')

def frame_analysis(prev_frame, curr_frame):
    prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_RGB2GRAY)
    curr_gray = cv2.cvtColor(curr_frame, cv2.COLOR_RGB2GRAY)

    ssim_score = ssim(prev_gray, curr_gray)
    mean_diff = np.mean(np.abs(curr_frame.astype(float) - prev_frame.astype(float)))

    return ssim_score, mean_diff

def is_anomaly(ssim_score, mean_diff, ssim_history, mean_diff_history):
    if len(ssim_history) < 5:
        return False

    ssim_avg = np.mean(ssim_history)
    mean_diff_avg = np.mean(mean_diff_history)

    ssim_threshold = 0.85
    mean_diff_threshold = 6.0

    ssim_change_threshold = 0.05
    mean_diff_change_threshold = 3.0

    if (ssim_score < ssim_threshold and mean_diff > mean_diff_threshold) or \
       (ssim_score < ssim_avg - ssim_change_threshold and mean_diff > mean_diff_avg + mean_diff_change_threshold):
        return True

    return False

@torch.no_grad()
def visualize(dataloader, pipeline, generator, W, H, video_length, num_inference_steps, guidance_scale, output_path, output_fps=7, limit=1, show_stats=False, anomaly_action="none", callback_steps=1, context_frames=24, context_stride=1, context_overlap=4, context_batch_size=1,interpolation_factor=1):
    oo_video_path = None
    all_video_path = None
    
    for i, batch in enumerate(dataloader):
        ref_frame = batch['ref_frame'][0]
        clip_image = batch['clip_image'][0]
        motions = batch['motions'][0]
        file_name = batch['file_name'][0]
        if motions is None:
            continue
        if 'lmk_name' in batch:
            lmk_name = batch['lmk_name'][0].split('.')[0]
        else:
            lmk_name = 'lmk'
        print(file_name, lmk_name)

        ref_frame = torch.clamp((ref_frame + 1.0) / 2.0, min=0, max=1)
        ref_frame = ref_frame.permute((1, 2, 3, 0)).squeeze()
        ref_frame = (ref_frame * 255).cpu().numpy().astype(np.uint8)
        ref_image = Image.fromarray(ref_frame)

        motions = motions.permute((1, 2, 3, 0))
        motions = (motions * 255).cpu().numpy().astype(np.uint8)
        lmk_images = [Image.fromarray(motion) for motion in motions]

        preds = pipeline(ref_image=ref_image,
                         lmk_images=lmk_images,
                         width=W,
                         height=H,
                         video_length=video_length,
                         num_inference_steps=num_inference_steps,
                         guidance_scale=guidance_scale,
                         generator=generator,
                         clip_image=clip_image,
                         callback_steps=callback_steps,
                         context_frames=context_frames,
                         context_stride=context_stride,
                         context_overlap=context_overlap,
                         context_batch_size=context_batch_size,
                         interpolation_factor=interpolation_factor
                        ).videos

        preds = preds.permute((0,2,3,4,1)).squeeze(0)
        preds = (preds * 255).cpu().numpy().astype(np.uint8)

        # Сохраняем все кадры
        frames_dir = os.path.join(output_path, f"frames")
        os.makedirs(frames_dir, exist_ok=True)
        frame_paths = []
        for idx, frame in enumerate(preds):
            frame_path = os.path.join(frames_dir, f"frame_{idx:04d}.png")
            imageio.imwrite(frame_path, frame)
            frame_paths.append(frame_path)

        # Обработка аномалий
        filtered_frame_paths = []
        prev_frame = None
        ssim_history = deque(maxlen=5)
        mean_diff_history = deque(maxlen=5)

        for idx, frame_path in enumerate(frame_paths):
            frame = imageio.imread(frame_path)
            if prev_frame is not None:
                ssim_score, mean_diff = frame_analysis(prev_frame, frame)
                ssim_history.append(ssim_score)
                mean_diff_history.append(mean_diff)

                if show_stats:
                    print(f"Frame {idx}: SSIM: {ssim_score:.4f}, Mean Diff: {mean_diff:.4f}")

                if is_anomaly(ssim_score, mean_diff, ssim_history, mean_diff_history):
                    
                    if show_stats or anomaly_action != "none":
                        print(f"Anomaly detected in frame {idx}")
    
                    if anomaly_action == "remove":
                        continue
                    # Если "none", просто продолжаем без каких-либо действий

            filtered_frame_paths.append(frame_path)
            prev_frame = frame

        # Создание видео из обработанных кадров
        oo_video_path = os.path.join(output_path, f"{lmk_name}_oo.mp4")
        imageio.mimsave(oo_video_path, [imageio.imread(frame_path) for frame_path in filtered_frame_paths], fps=output_fps)

        if 'frames' in batch:
            frames = batch['frames'][0]
            frames = torch.clamp((frames + 1.0) / 2.0, min=0, max=1)
            frames = frames.permute((1, 2, 3, 0))
            frames = (frames * 255).cpu().numpy().astype(np.uint8)
            combined = [np.concatenate((frame, motion, ref_frame, imageio.imread(pred_path)), axis=1)
                        for frame, motion, pred_path in zip(frames, motions, filtered_frame_paths)]
        else:
            combined = [np.concatenate((motion, ref_frame, imageio.imread(pred_path)), axis=1)
                        for motion, pred_path in zip(motions, filtered_frame_paths)]

        all_video_path = os.path.join(output_path, f"{lmk_name}_all.mp4")
        imageio.mimsave(all_video_path, combined, fps=output_fps)

        if i >= limit:
            break

    return oo_video_path, all_video_path

@torch.no_grad()
def infer(config_path, model_path, input_path, lmk_path, output_path, model_step, seed,
          resolution_w, resolution_h, video_length, num_inference_steps, guidance_scale, output_fps, show_stats,
          anomaly_action, callback_steps, context_frames, context_stride, context_overlap, context_batch_size,interpolation_factor):

    config = OmegaConf.load(config_path)
    config.init_checkpoint = model_path
    config.init_num = model_step
    config.resolution_w = resolution_w
    config.resolution_h = resolution_h
    config.video_length = video_length

    if config.weight_dtype == "fp16":
        weight_dtype = torch.float16
    elif config.weight_dtype == "fp32":
        weight_dtype = torch.float32
    else:
        raise ValueError(f"Do not support weight dtype: {config.weight_dtype}")

    vae = AutoencoderKL.from_pretrained(config.vae_model_path).to(dtype=weight_dtype, device="cuda")
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(config.image_encoder_path).to(dtype=weight_dtype, device="cuda")
    referencenet = ReferenceNet2DConditionModel.from_pretrained_2d(config.base_model_path,
                                                                   referencenet_additional_kwargs=config.model.referencenet_additional_kwargs).to(device="cuda")
    unet = UNet3DConditionModel.from_pretrained_2d(config.base_model_path,
                                                   motion_module_path=config.motion_module_path,
                                                   unet_additional_kwargs=config.model.unet_additional_kwargs).to(device="cuda")
    lmk_guider = Guider(conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)).to(device="cuda")

    load_model_state_dict(referencenet, f'{config.init_checkpoint}/referencenet.pth', 'referencenet')
    load_model_state_dict(unet, f'{config.init_checkpoint}/unet.pth', 'unet')
    load_model_state_dict(lmk_guider, f'{config.init_checkpoint}/lmk_guider.pth', 'lmk_guider')

    if config.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            referencenet.enable_xformers_memory_efficient_attention()
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    unet.set_reentrant(use_reentrant=False)
    referencenet.set_reentrant(use_reentrant=False)

    vae.eval()
    image_encoder.eval()
    unet.eval()
    referencenet.eval()
    lmk_guider.eval()

    sched_kwargs = OmegaConf.to_container(config.scheduler)
    if config.enable_zero_snr:
        sched_kwargs.update(rescale_betas_zero_snr=True,
                            timestep_spacing="trailing",
                            prediction_type="v_prediction")
    noise_scheduler = DDIMScheduler(**sched_kwargs)

    pipeline = VideoPipeline(vae=vae,
                             image_encoder=image_encoder,
                             referencenet=referencenet,
                             unet=unet,
                             lmk_guider=lmk_guider,
                             scheduler=noise_scheduler).to(vae.device, dtype=weight_dtype)

    val_dataset = ValDataset(
        input_path=input_path,
        lmk_path=lmk_path,
        resolution_h=config.resolution_h,
        resolution_w=config.resolution_w
    )

    val_dataloader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=1,
        num_workers=0,
        shuffle=False,
        collate_fn=val_collate_fn,
    )

    generator = torch.Generator(device=vae.device)
    generator.manual_seed(seed)

    oo_video_path, all_video_path = visualize(
        val_dataloader,
        pipeline,
        generator,
        W=config.resolution_w,
        H=config.resolution_h,
        video_length=config.video_length,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        output_path=output_path,
        output_fps=output_fps,
        show_stats=show_stats,
        anomaly_action=anomaly_action,
        callback_steps=callback_steps,
        context_frames=context_frames,
        context_stride=context_stride,
        context_overlap=context_overlap,
        context_batch_size=context_batch_size,
        interpolation_factor=interpolation_factor,
        limit=100000000
    )

    del vae, image_encoder, referencenet, unet, lmk_guider, pipeline
    torch.cuda.empty_cache()
    gc.collect()

    return "Inference completed successfully", oo_video_path, all_video_path

def run_inference(config_path, model_path, input_path, lmk_path, output_path, model_step, seed,
                  resolution_w, resolution_h, video_length, num_inference_steps=30, guidance_scale=3.5, output_fps=30,
                  show_stats=False, anomaly_action="none", callback_steps=1, context_frames=24, context_stride=1,
                  context_overlap=4, context_batch_size=1,interpolation_factor=1):
    try:
        # Clear memory
        torch.cuda.empty_cache()
        gc.collect()

        return infer(config_path, model_path, input_path, lmk_path, output_path, model_step, seed,
                     resolution_w, resolution_h, video_length, num_inference_steps, guidance_scale, output_fps,
                     show_stats, anomaly_action, callback_steps, context_frames, context_stride, context_overlap, context_batch_size,interpolation_factor)
    finally:
        torch.cuda.empty_cache()
        gc.collect()

if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, required=True, help="Path to the config file")
    parser.add_argument("--model", type=str, required=True, help="Path to the model checkpoint")
    parser.add_argument("--input", type=str, required=True, help="Path to the input image")
    parser.add_argument("--lmk", type=str, required=True, help="Path to the landmark file")
    parser.add_argument("--output", type=str, required=True, help="Path to save the output")
    parser.add_argument("--step", type=int, default=0, help="Model step")
    parser.add_argument("--seed", type=int, default=42, help="Random seed")
    parser.add_argument("--width", type=int, default=512, help="Output video width")
    parser.add_argument("--height", type=int, default=512, help="Output video height")
    parser.add_argument("--length", type=int, default=16, help="Output video length")
    parser.add_argument("--steps", type=int, default=30, help="Number of inference steps")
    parser.add_argument("--guidance", type=float, default=3.5, help="Guidance scale")
    parser.add_argument("--fps", type=int, default=30, help="Output video FPS")
    parser.add_argument("--show-stats", action="store_true", help="Show frame statistics")
    parser.add_argument("--anomaly-action", type=str, default="none", choices=["none", "remove"], help="Action for anomaly frames")
    parser.add_argument("--callback-steps", type=int, default=1, help="Callback steps")
    parser.add_argument("--context-frames", type=int, default=24, help="Context frames")
    parser.add_argument("--context-stride", type=int, default=1, help="Context stride")
    parser.add_argument("--context-overlap", type=int, default=4, help="Context overlap")
    parser.add_argument("--context-batch-size", type=int, default=1, help="Context batch size")
    parser.add_argument("--interpolation-factor",type=int, default=1, help="Interpolataion factor" )

    args = parser.parse_args()

    status, oo_path, all_path = run_inference(
        args.config, args.model, args.input, args.lmk, args.output, args.step, args.seed,
        args.width, args.height, args.length, args.steps, args.guidance, args.fps,
        args.show_stats, args.anomaly_action, args.callback_steps, args.context_frames,
        args.context_stride, args.context_overlap, args.context_batch_size,args.interpolation_factor
    )

    print(status)
    print(f"Output video (only output): {oo_path}")
    print(f"Output video (all frames): {all_path}")