Mildclimate commited on
Commit
051b2c9
·
verified ·
1 Parent(s): 8bc810e

upload dataset module

Browse files
Files changed (2) hide show
  1. dataset/__init__.py +0 -0
  2. dataset/val_dataset.py +130 -0
dataset/__init__.py ADDED
File without changes
dataset/val_dataset.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pathlib import Path
3
+ from PIL import Image
4
+
5
+ import torch
6
+ from torch.utils.data import Dataset
7
+ import torchvision.transforms as T
8
+
9
+ from transformers import CLIPImageProcessor
10
+
11
+ import sys
12
+ sys.path.append("/path/to/FollowYourEmoji")
13
+ from media_pipe import FaceMeshDetector, FaceMeshAlign
14
+ from media_pipe.draw_util import FaceMeshVisualizer
15
+
16
+
17
+ def val_collate_fn(samples):
18
+ return {
19
+ 'ref_frame': [sample['ref_frame'] for sample in samples],
20
+ 'clip_image': [sample['clip_image'] for sample in samples],
21
+ 'motions': [sample['motions'] for sample in samples],
22
+ 'file_name': [sample['file_name'] for sample in samples],
23
+ 'lmk_name': [sample['lmk_name'] for sample in samples],
24
+ }
25
+
26
+
27
+ class ValDataset(Dataset):
28
+ def __init__(self, input_path, lmk_path, resolution_w=512, resolution_h=512):
29
+
30
+ print(f'Loading dataset from {input_path} and {lmk_path}')
31
+
32
+ all_img_paths = self._get_path_files(Path(input_path), file_suffix=['.jpg', '.jpeg', '.png', '.webp'])
33
+ all_lmk_paths = self._get_path_files(Path(lmk_path), file_suffix=['.npy'])
34
+
35
+ print(f'Found {len(all_img_paths)} image files and {len(all_lmk_paths)} lmk files')
36
+ print(f"ALL IMG PATH: {all_img_paths}")
37
+ print(f"ALL LKM PATH: {all_lmk_paths}")
38
+ self.all_paths = []
39
+ for lmk_path in all_lmk_paths:
40
+ for img_path in all_img_paths:
41
+ self.all_paths.append((img_path, lmk_path))
42
+
43
+ self.W = resolution_w
44
+ self.H = resolution_h
45
+ self.to_tensor = T.ToTensor()
46
+
47
+ self.detector = FaceMeshDetector()
48
+ self.aligner = FaceMeshAlign()
49
+
50
+ self.clip_image_processor = CLIPImageProcessor()
51
+ self.vis = FaceMeshVisualizer(forehead_edge=False, iris_edge=False, iris_point=True)
52
+
53
+ def __len__(self):
54
+ return len(self.all_paths)
55
+
56
+ def _get_path_files(self, path, file_suffix):
57
+ all_paths = []
58
+ if path.is_file():
59
+ if path.suffix.lower() in file_suffix:
60
+ all_paths = [path]
61
+ else:
62
+ raise ValueError('Path is not valid image file.')
63
+ elif path.is_dir():
64
+ all_paths = sorted(
65
+ [
66
+ f
67
+ for f in path.iterdir()
68
+ if f.is_file() and f.suffix.lower() in file_suffix
69
+ ]
70
+ )
71
+ if len(all_paths) == 0:
72
+ raise ValueError('Folder does not contain any images.')
73
+ else:
74
+ raise ValueError
75
+
76
+ return all_paths
77
+
78
+ def get_align_motion(self, ref_lmk, temp_lmks):
79
+ motions = self.aligner(ref_lmk, temp_lmks)
80
+ motions = [self.to_tensor(motion) for motion in motions]
81
+ motions = torch.stack(motions).permute((1,0,2,3))
82
+ return motions
83
+
84
+ def __getitem__(self, index):
85
+ img_path, lmk_path = self.all_paths[index]
86
+ W, H = self.W, self.H
87
+
88
+ image = Image.open(img_path).convert('RGB')
89
+
90
+ # resize and center crop
91
+ scale = min(W / image.size[0], H / image.size[1])
92
+ ref_image = image.resize(
93
+ (int(image.size[0] * scale), int(image.size[1] * scale)))
94
+ w, h = ref_image.size[0], ref_image.size[1]
95
+ ref_image = ref_image.crop((w//2-W//2, h//2-H//2, w//2+W//2, h//2+H//2))
96
+ ref_image = np.array(ref_image)
97
+
98
+ # reference image lmk
99
+ ref_lmk_image, ref_lmk = self.detector(ref_image)
100
+
101
+ # clip image
102
+ clip_image = Image.fromarray(np.array(ref_image))
103
+ clip_image = self.clip_image_processor(images=clip_image, return_tensors="pt").pixel_values[0]
104
+
105
+ # reference image
106
+ ref_image = self.to_tensor(ref_image).unsqueeze(1)
107
+ ref_image = ref_image * 2.0 - 1.0
108
+
109
+ # motion sequence
110
+ temp_lmks = np.load(lmk_path, allow_pickle=True)
111
+ # landmark align and draw motions
112
+ if ref_lmk is not None:
113
+ motions = self.get_align_motion(ref_lmk, temp_lmks)
114
+ else:
115
+ motions = [
116
+ self.vis.draw_landmarks((H, W), lmk['lmks'].astype(np.float32), normed=True)
117
+ for lmk in temp_lmks
118
+ ]
119
+ motions = [self.to_tensor(motion) for motion in motions]
120
+ motions = torch.stack(motions).permute((1,0,2,3))
121
+
122
+ example = dict()
123
+ example["file_name"] = str(img_path.stem).split('/')[-1]
124
+ example["lmk_name"] = str(lmk_path.stem).split('/')[-1]
125
+ example["motions"] = motions # value in [0, 1]
126
+ example["ref_frame"] = ref_image # value in [-1, 1]
127
+ example["ref_lmk_image"] = ref_lmk_image
128
+ example["clip_image"] = clip_image
129
+
130
+ return example