Spaces:
Sleeping
Sleeping
| """Start a hyperoptimization from a single node""" | |
| import pickle as pkl | |
| import sys | |
| import hyperopt | |
| import numpy as np | |
| from hyperopt import Trials, fmin, hp, tpe | |
| from hyperopt.fmin import generate_trials_to_calculate | |
| from space import * | |
| from pysr import PySRRegressor | |
| # Change the following code to your file | |
| ################################################################################ | |
| TRIALS_FOLDER = "trials2" | |
| NUMBER_TRIALS_PER_RUN = 1 | |
| timeout_in_minutes = 10 | |
| start_from_init_vals = False | |
| # Test run to compile everything: | |
| julia_project = None | |
| procs = 4 | |
| model = PySRRegressor( | |
| binary_operators=binary_operators, | |
| unary_operators=unary_operators, | |
| timeout_in_seconds=30, | |
| julia_project=julia_project, | |
| procs=procs, | |
| update=False, | |
| temp_equation_file=True, | |
| ) | |
| model.fit(np.random.randn(100, 3), np.random.randn(100)) | |
| def run_trial(args): | |
| """Evaluate the model loss using the hyperparams in args | |
| :args: A dictionary containing all hyperparameters | |
| :returns: Dict with status and loss from cross-validation | |
| """ | |
| # The arguments which are integers: | |
| integer_args = [ | |
| "populations", | |
| "niterations", | |
| "ncyclesperiteration", | |
| "population_size", | |
| "topn", | |
| "maxsize", | |
| "optimizer_nrestarts", | |
| "optimizer_iterations", | |
| ] | |
| # Set these to int types: | |
| for k, v in args.items(): | |
| if k in integer_args: | |
| args[k] = int(v) | |
| # Duplicate this argument: | |
| args["tournament_selection_n"] = args["topn"] | |
| # Invalid hyperparams: | |
| invalid = args["population_size"] < args["topn"] | |
| if invalid: | |
| return dict(status="fail", loss=float("inf")) | |
| args["timeout_in_seconds"] = timeout_in_minutes * 60 | |
| args["julia_project"] = julia_project | |
| args["procs"] = procs | |
| args["update"] = False | |
| args["temp_equation_file"] = True | |
| print(f"Running trial with args: {args}") | |
| # Create the dataset: | |
| ntrials = 3 | |
| losses = [] | |
| # Old datasets: | |
| eval_str = [ | |
| "np.cos(2.3 * X[:, 0]) * np.sin(2.3 * X[:, 0] * X[:, 1] * X[:, 2]) - 10.0", | |
| "(np.exp(X[:, 3]*0.3) + 3)/(np.exp(X[:, 1]*0.2) + np.cos(X[:, 0]) + 1.1)", | |
| # "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5", | |
| # "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)", | |
| # "X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0", | |
| ] | |
| for expression in eval_str: | |
| expression_losses = [] | |
| for i in range(ntrials): | |
| rstate = np.random.RandomState(i) | |
| X = 3 * rstate.randn(200, 5) | |
| y = eval(expression) | |
| # Normalize y so that losses are fair: | |
| y = (y - np.average(y)) / np.std(y) | |
| # Create the model: | |
| model = PySRRegressor(**args) | |
| # Run the model: | |
| try: | |
| model.fit(X, y) | |
| except RuntimeError: | |
| return dict(status="fail", loss=float("inf")) | |
| # Compute loss: | |
| cur_loss = float(model.get_best()["loss"]) | |
| expression_losses.append(cur_loss) | |
| losses.append(np.median(expression_losses)) | |
| loss = np.average(losses) | |
| print(f"Finished with {loss}", str(args)) | |
| return dict(status="ok", loss=loss) | |
| rand_between = lambda lo, hi: (np.random.rand() * (hi - lo) + lo) | |
| init_vals = [ | |
| dict( | |
| model_selection=0, # 0 means first choice | |
| binary_operators=0, | |
| unary_operators=0, | |
| populations=100.0, | |
| niterations=0, | |
| ncyclesperiteration=rand_between(50, 150), | |
| alpha=rand_between(0.05, 0.2), | |
| annealing=0, | |
| # fraction_replaced=0.01, | |
| fraction_replaced=0.01, | |
| # fraction_replaced_hof=0.005, | |
| fraction_replaced_hof=0.005, | |
| # population_size=100, | |
| population_size=rand_between(50, 200), | |
| # parsimony=1e-4, | |
| parsimony=1e-4, | |
| # topn=10, | |
| topn=10.0, | |
| # weight_add_node=1, | |
| weight_add_node=1.0, | |
| # weight_insert_node=3, | |
| weight_insert_node=3.0, | |
| # weight_delete_node=3, | |
| weight_delete_node=3.0, | |
| # weight_do_nothing=1, | |
| weight_do_nothing=1.0, | |
| # weight_mutate_constant=10, | |
| weight_mutate_constant=10.0, | |
| # weight_mutate_operator=1, | |
| weight_mutate_operator=1.0, | |
| # weight_swap_operands=1, | |
| weight_swap_operands=1.0, | |
| # weight_randomize=1, | |
| weight_randomize=1.0, | |
| # weight_simplify=0.002, | |
| weight_simplify=0, # One of these is fixed. | |
| # crossover_probability=0.01 | |
| crossover_probability=0.01, | |
| # perturbation_factor=1.0, | |
| perturbation_factor=1.0, | |
| # maxsize=20, | |
| maxsize=0, | |
| # warmup_maxsize_by=0.0, | |
| warmup_maxsize_by=0.0, | |
| # use_frequency=True, | |
| use_frequency=1, | |
| # optimizer_nrestarts=3, | |
| optimizer_nrestarts=3.0, | |
| # optimize_probability=1.0, | |
| optimize_probability=1.0, | |
| # optimizer_iterations=10, | |
| optimizer_iterations=10.0, | |
| # tournament_selection_p=1.0, | |
| tournament_selection_p=rand_between(0.9, 0.999), | |
| ) | |
| ] | |
| ################################################################################ | |
| def merge_trials(trials1, trials2_slice): | |
| """Merge two hyperopt trials objects | |
| :trials1: The primary trials object | |
| :trials2_slice: A slice of the trials object to be merged, | |
| obtained with, e.g., trials2.trials[:10] | |
| :returns: The merged trials object | |
| """ | |
| max_tid = 0 | |
| if len(trials1.trials) > 0: | |
| max_tid = max([trial["tid"] for trial in trials1.trials]) | |
| for trial in trials2_slice: | |
| tid = trial["tid"] + max_tid + 2 | |
| local_hyperopt_trial = Trials().new_trial_docs( | |
| tids=[None], specs=[None], results=[None], miscs=[None] | |
| ) | |
| local_hyperopt_trial[0] = trial | |
| local_hyperopt_trial[0]["tid"] = tid | |
| local_hyperopt_trial[0]["misc"]["tid"] = tid | |
| for key in local_hyperopt_trial[0]["misc"]["idxs"].keys(): | |
| local_hyperopt_trial[0]["misc"]["idxs"][key] = [tid] | |
| trials1.insert_trial_docs(local_hyperopt_trial) | |
| trials1.refresh() | |
| return trials1 | |
| import glob | |
| path = TRIALS_FOLDER + "/*.pkl" | |
| n_prior_trials = len(list(glob.glob(path))) | |
| loaded_fnames = [] | |
| if start_from_init_vals: | |
| trials = generate_trials_to_calculate(init_vals) | |
| i = 0 | |
| else: | |
| trials = Trials() | |
| i = 1 | |
| n = NUMBER_TRIALS_PER_RUN | |
| # Run new hyperparameter trials until killed | |
| while True: | |
| np.random.seed() | |
| # Load up all runs: | |
| if i > 0: | |
| for fname in glob.glob(path): | |
| if fname in loaded_fnames: | |
| continue | |
| trials_obj = pkl.load(open(fname, "rb")) | |
| n_trials = trials_obj["n"] | |
| trials_obj = trials_obj["trials"] | |
| if len(loaded_fnames) == 0: | |
| trials = trials_obj | |
| else: | |
| print("Merging trials") | |
| trials = merge_trials(trials, trials_obj.trials[-n_trials:]) | |
| loaded_fnames.append(fname) | |
| print("Loaded trials", len(loaded_fnames)) | |
| if len(loaded_fnames) == 0: | |
| trials = Trials() | |
| try: | |
| best = fmin( | |
| run_trial, | |
| space=space, | |
| algo=tpe.suggest, | |
| max_evals=n + len(trials.trials), | |
| trials=trials, | |
| verbose=1, | |
| rstate=np.random.RandomState(np.random.randint(1, 10**6)), | |
| ) | |
| except hyperopt.exceptions.AllTrialsFailed: | |
| continue | |
| else: | |
| best = fmin( | |
| run_trial, | |
| space=space, | |
| algo=tpe.suggest, | |
| max_evals=1, | |
| trials=trials, | |
| points_to_evaluate=init_vals, | |
| ) | |
| print("current best", best) | |
| hyperopt_trial = Trials() | |
| # Merge with empty trials dataset: | |
| if i == 0: | |
| save_trials = merge_trials(hyperopt_trial, trials.trials) | |
| else: | |
| save_trials = merge_trials(hyperopt_trial, trials.trials[-n:]) | |
| new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl" | |
| pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb")) | |
| loaded_fnames.append(new_fname) | |
| i += 1 | |