Spaces:
Running
Running
Commit
·
4fca5d2
1
Parent(s):
921343f
Refactored iterate to simulated annealing
Browse files- julia/simulatedAnnealing.jl +125 -0
- julia/sr.jl +1 -128
julia/simulatedAnnealing.jl
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Go through one simulated annealing mutation cycle
|
| 2 |
+
# exp(-delta/T) defines probability of accepting a change
|
| 3 |
+
function iterate(member::PopMember, T::Float32, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1})::PopMember
|
| 4 |
+
prev = member.tree
|
| 5 |
+
tree = prev
|
| 6 |
+
#TODO - reconsider this
|
| 7 |
+
if batching
|
| 8 |
+
beforeLoss = scoreFuncBatch(prev)
|
| 9 |
+
else
|
| 10 |
+
beforeLoss = member.score
|
| 11 |
+
end
|
| 12 |
+
|
| 13 |
+
mutationChoice = rand()
|
| 14 |
+
#More constants => more likely to do constant mutation
|
| 15 |
+
weightAdjustmentMutateConstant = min(8, countConstants(prev))/8.0
|
| 16 |
+
cur_weights = copy(mutationWeights) .* 1.0
|
| 17 |
+
cur_weights[1] *= weightAdjustmentMutateConstant
|
| 18 |
+
n = countNodes(prev)
|
| 19 |
+
depth = countDepth(prev)
|
| 20 |
+
|
| 21 |
+
# If equation too big, don't add new operators
|
| 22 |
+
if n >= curmaxsize || depth >= maxdepth
|
| 23 |
+
cur_weights[3] = 0.0
|
| 24 |
+
cur_weights[4] = 0.0
|
| 25 |
+
end
|
| 26 |
+
cur_weights /= sum(cur_weights)
|
| 27 |
+
cweights = cumsum(cur_weights)
|
| 28 |
+
|
| 29 |
+
successful_mutation = false
|
| 30 |
+
#TODO: Currently we dont take this \/ into account
|
| 31 |
+
is_success_always_possible = true
|
| 32 |
+
attempts = 0
|
| 33 |
+
max_attempts = 10
|
| 34 |
+
|
| 35 |
+
#############################################
|
| 36 |
+
# Mutations
|
| 37 |
+
#############################################
|
| 38 |
+
while (!successful_mutation) && attempts < max_attempts
|
| 39 |
+
tree = copyNode(prev)
|
| 40 |
+
successful_mutation = true
|
| 41 |
+
if mutationChoice < cweights[1]
|
| 42 |
+
tree = mutateConstant(tree, T)
|
| 43 |
+
|
| 44 |
+
is_success_always_possible = true
|
| 45 |
+
# Mutating a constant shouldn't invalidate an already-valid function
|
| 46 |
+
|
| 47 |
+
elseif mutationChoice < cweights[2]
|
| 48 |
+
tree = mutateOperator(tree)
|
| 49 |
+
|
| 50 |
+
is_success_always_possible = true
|
| 51 |
+
# Can always mutate to the same operator
|
| 52 |
+
|
| 53 |
+
elseif mutationChoice < cweights[3]
|
| 54 |
+
if rand() < 0.5
|
| 55 |
+
tree = appendRandomOp(tree)
|
| 56 |
+
else
|
| 57 |
+
tree = prependRandomOp(tree)
|
| 58 |
+
end
|
| 59 |
+
is_success_always_possible = false
|
| 60 |
+
# Can potentially have a situation without success
|
| 61 |
+
elseif mutationChoice < cweights[4]
|
| 62 |
+
tree = insertRandomOp(tree)
|
| 63 |
+
is_success_always_possible = false
|
| 64 |
+
elseif mutationChoice < cweights[5]
|
| 65 |
+
tree = deleteRandomOp(tree)
|
| 66 |
+
is_success_always_possible = true
|
| 67 |
+
elseif mutationChoice < cweights[6]
|
| 68 |
+
tree = simplifyTree(tree) # Sometimes we simplify tree
|
| 69 |
+
tree = combineOperators(tree) # See if repeated constants at outer levels
|
| 70 |
+
return PopMember(tree, beforeLoss)
|
| 71 |
+
|
| 72 |
+
is_success_always_possible = true
|
| 73 |
+
# Simplification shouldn't hurt complexity; unless some non-symmetric constraint
|
| 74 |
+
# to commutative operator...
|
| 75 |
+
|
| 76 |
+
elseif mutationChoice < cweights[7]
|
| 77 |
+
tree = genRandomTree(5) # Sometimes we generate a new tree completely tree
|
| 78 |
+
|
| 79 |
+
is_success_always_possible = true
|
| 80 |
+
else # no mutation applied
|
| 81 |
+
return PopMember(tree, beforeLoss)
|
| 82 |
+
end
|
| 83 |
+
|
| 84 |
+
# Check for illegal equations
|
| 85 |
+
for i=1:nbin
|
| 86 |
+
if successful_mutation && flagBinOperatorComplexity(tree, i)
|
| 87 |
+
successful_mutation = false
|
| 88 |
+
end
|
| 89 |
+
end
|
| 90 |
+
for i=1:nuna
|
| 91 |
+
if successful_mutation && flagUnaOperatorComplexity(tree, i)
|
| 92 |
+
successful_mutation = false
|
| 93 |
+
end
|
| 94 |
+
end
|
| 95 |
+
|
| 96 |
+
attempts += 1
|
| 97 |
+
end
|
| 98 |
+
#############################################
|
| 99 |
+
|
| 100 |
+
if !successful_mutation
|
| 101 |
+
return PopMember(copyNode(prev), beforeLoss)
|
| 102 |
+
end
|
| 103 |
+
|
| 104 |
+
if batching
|
| 105 |
+
afterLoss = scoreFuncBatch(tree)
|
| 106 |
+
else
|
| 107 |
+
afterLoss = scoreFunc(tree)
|
| 108 |
+
end
|
| 109 |
+
|
| 110 |
+
if annealing
|
| 111 |
+
delta = afterLoss - beforeLoss
|
| 112 |
+
probChange = exp(-delta/(T*alpha))
|
| 113 |
+
if useFrequency
|
| 114 |
+
oldSize = countNodes(prev)
|
| 115 |
+
newSize = countNodes(tree)
|
| 116 |
+
probChange *= frequencyComplexity[oldSize] / frequencyComplexity[newSize]
|
| 117 |
+
end
|
| 118 |
+
|
| 119 |
+
return_unaltered = (isnan(afterLoss) || probChange < rand())
|
| 120 |
+
if return_unaltered
|
| 121 |
+
return PopMember(copyNode(prev), beforeLoss)
|
| 122 |
+
end
|
| 123 |
+
end
|
| 124 |
+
return PopMember(tree, afterLoss)
|
| 125 |
+
end
|
julia/sr.jl
CHANGED
|
@@ -33,138 +33,11 @@ include("halloffame.jl")
|
|
| 33 |
|
| 34 |
include("complexityChecks.jl")
|
| 35 |
|
| 36 |
-
|
| 37 |
-
# Go through one simulated annealing mutation cycle
|
| 38 |
-
# exp(-delta/T) defines probability of accepting a change
|
| 39 |
-
function iterate(member::PopMember, T::Float32, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1})::PopMember
|
| 40 |
-
prev = member.tree
|
| 41 |
-
tree = prev
|
| 42 |
-
#TODO - reconsider this
|
| 43 |
-
if batching
|
| 44 |
-
beforeLoss = scoreFuncBatch(prev)
|
| 45 |
-
else
|
| 46 |
-
beforeLoss = member.score
|
| 47 |
-
end
|
| 48 |
-
|
| 49 |
-
mutationChoice = rand()
|
| 50 |
-
#More constants => more likely to do constant mutation
|
| 51 |
-
weightAdjustmentMutateConstant = min(8, countConstants(prev))/8.0
|
| 52 |
-
cur_weights = copy(mutationWeights) .* 1.0
|
| 53 |
-
cur_weights[1] *= weightAdjustmentMutateConstant
|
| 54 |
-
n = countNodes(prev)
|
| 55 |
-
depth = countDepth(prev)
|
| 56 |
-
|
| 57 |
-
# If equation too big, don't add new operators
|
| 58 |
-
if n >= curmaxsize || depth >= maxdepth
|
| 59 |
-
cur_weights[3] = 0.0
|
| 60 |
-
cur_weights[4] = 0.0
|
| 61 |
-
end
|
| 62 |
-
cur_weights /= sum(cur_weights)
|
| 63 |
-
cweights = cumsum(cur_weights)
|
| 64 |
-
|
| 65 |
-
successful_mutation = false
|
| 66 |
-
#TODO: Currently we dont take this \/ into account
|
| 67 |
-
is_success_always_possible = true
|
| 68 |
-
attempts = 0
|
| 69 |
-
max_attempts = 10
|
| 70 |
-
|
| 71 |
-
#############################################
|
| 72 |
-
# Mutations
|
| 73 |
-
#############################################
|
| 74 |
-
while (!successful_mutation) && attempts < max_attempts
|
| 75 |
-
tree = copyNode(prev)
|
| 76 |
-
successful_mutation = true
|
| 77 |
-
if mutationChoice < cweights[1]
|
| 78 |
-
tree = mutateConstant(tree, T)
|
| 79 |
-
|
| 80 |
-
is_success_always_possible = true
|
| 81 |
-
# Mutating a constant shouldn't invalidate an already-valid function
|
| 82 |
-
|
| 83 |
-
elseif mutationChoice < cweights[2]
|
| 84 |
-
tree = mutateOperator(tree)
|
| 85 |
-
|
| 86 |
-
is_success_always_possible = true
|
| 87 |
-
# Can always mutate to the same operator
|
| 88 |
-
|
| 89 |
-
elseif mutationChoice < cweights[3]
|
| 90 |
-
if rand() < 0.5
|
| 91 |
-
tree = appendRandomOp(tree)
|
| 92 |
-
else
|
| 93 |
-
tree = prependRandomOp(tree)
|
| 94 |
-
end
|
| 95 |
-
is_success_always_possible = false
|
| 96 |
-
# Can potentially have a situation without success
|
| 97 |
-
elseif mutationChoice < cweights[4]
|
| 98 |
-
tree = insertRandomOp(tree)
|
| 99 |
-
is_success_always_possible = false
|
| 100 |
-
elseif mutationChoice < cweights[5]
|
| 101 |
-
tree = deleteRandomOp(tree)
|
| 102 |
-
is_success_always_possible = true
|
| 103 |
-
elseif mutationChoice < cweights[6]
|
| 104 |
-
tree = simplifyTree(tree) # Sometimes we simplify tree
|
| 105 |
-
tree = combineOperators(tree) # See if repeated constants at outer levels
|
| 106 |
-
return PopMember(tree, beforeLoss)
|
| 107 |
-
|
| 108 |
-
is_success_always_possible = true
|
| 109 |
-
# Simplification shouldn't hurt complexity; unless some non-symmetric constraint
|
| 110 |
-
# to commutative operator...
|
| 111 |
-
|
| 112 |
-
elseif mutationChoice < cweights[7]
|
| 113 |
-
tree = genRandomTree(5) # Sometimes we generate a new tree completely tree
|
| 114 |
-
|
| 115 |
-
is_success_always_possible = true
|
| 116 |
-
else # no mutation applied
|
| 117 |
-
return PopMember(tree, beforeLoss)
|
| 118 |
-
end
|
| 119 |
-
|
| 120 |
-
# Check for illegal equations
|
| 121 |
-
for i=1:nbin
|
| 122 |
-
if successful_mutation && flagBinOperatorComplexity(tree, i)
|
| 123 |
-
successful_mutation = false
|
| 124 |
-
end
|
| 125 |
-
end
|
| 126 |
-
for i=1:nuna
|
| 127 |
-
if successful_mutation && flagUnaOperatorComplexity(tree, i)
|
| 128 |
-
successful_mutation = false
|
| 129 |
-
end
|
| 130 |
-
end
|
| 131 |
-
|
| 132 |
-
attempts += 1
|
| 133 |
-
end
|
| 134 |
-
#############################################
|
| 135 |
-
|
| 136 |
-
if !successful_mutation
|
| 137 |
-
return PopMember(copyNode(prev), beforeLoss)
|
| 138 |
-
end
|
| 139 |
-
|
| 140 |
-
if batching
|
| 141 |
-
afterLoss = scoreFuncBatch(tree)
|
| 142 |
-
else
|
| 143 |
-
afterLoss = scoreFunc(tree)
|
| 144 |
-
end
|
| 145 |
-
|
| 146 |
-
if annealing
|
| 147 |
-
delta = afterLoss - beforeLoss
|
| 148 |
-
probChange = exp(-delta/(T*alpha))
|
| 149 |
-
if useFrequency
|
| 150 |
-
oldSize = countNodes(prev)
|
| 151 |
-
newSize = countNodes(tree)
|
| 152 |
-
probChange *= frequencyComplexity[oldSize] / frequencyComplexity[newSize]
|
| 153 |
-
end
|
| 154 |
-
|
| 155 |
-
return_unaltered = (isnan(afterLoss) || probChange < rand())
|
| 156 |
-
if return_unaltered
|
| 157 |
-
return PopMember(copyNode(prev), beforeLoss)
|
| 158 |
-
end
|
| 159 |
-
end
|
| 160 |
-
return PopMember(tree, afterLoss)
|
| 161 |
-
end
|
| 162 |
-
|
| 163 |
|
| 164 |
include("Population.jl")
|
| 165 |
|
| 166 |
|
| 167 |
-
|
| 168 |
# Pass through the population several times, replacing the oldest
|
| 169 |
# with the fittest of a small subsample
|
| 170 |
function regEvolCycle(pop::Population, T::Float32, curmaxsize::Integer,
|
|
|
|
| 33 |
|
| 34 |
include("complexityChecks.jl")
|
| 35 |
|
| 36 |
+
include("simulatedAnnealing.jl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
include("Population.jl")
|
| 39 |
|
| 40 |
|
|
|
|
| 41 |
# Pass through the population several times, replacing the oldest
|
| 42 |
# with the fittest of a small subsample
|
| 43 |
function regEvolCycle(pop::Population, T::Float32, curmaxsize::Integer,
|