Spaces:
Sleeping
Sleeping
Commit
·
5a4ff06
1
Parent(s):
20ec2db
Add file for printing best model
Browse files
benchmarks/print_best_model.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Print the best model parameters and loss"""
|
| 2 |
+
import sys
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pickle as pkl
|
| 5 |
+
import hyperopt
|
| 6 |
+
from hyperopt import hp, fmin, tpe, Trials
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
#Change the following code to your file
|
| 10 |
+
################################################################################
|
| 11 |
+
# TODO: Declare a folder to hold all trials objects
|
| 12 |
+
TRIALS_FOLDER = 'trials2'
|
| 13 |
+
################################################################################
|
| 14 |
+
|
| 15 |
+
def merge_trials(trials1, trials2_slice):
|
| 16 |
+
"""Merge two hyperopt trials objects
|
| 17 |
+
|
| 18 |
+
:trials1: The primary trials object
|
| 19 |
+
:trials2_slice: A slice of the trials object to be merged,
|
| 20 |
+
obtained with, e.g., trials2.trials[:10]
|
| 21 |
+
:returns: The merged trials object
|
| 22 |
+
|
| 23 |
+
"""
|
| 24 |
+
max_tid = 0
|
| 25 |
+
if len(trials1.trials) > 0:
|
| 26 |
+
max_tid = max([trial['tid'] for trial in trials1.trials])
|
| 27 |
+
|
| 28 |
+
for trial in trials2_slice:
|
| 29 |
+
tid = trial['tid'] + max_tid + 1
|
| 30 |
+
hyperopt_trial = Trials().new_trial_docs(
|
| 31 |
+
tids=[None],
|
| 32 |
+
specs=[None],
|
| 33 |
+
results=[None],
|
| 34 |
+
miscs=[None])
|
| 35 |
+
hyperopt_trial[0] = trial
|
| 36 |
+
hyperopt_trial[0]['tid'] = tid
|
| 37 |
+
hyperopt_trial[0]['misc']['tid'] = tid
|
| 38 |
+
for key in hyperopt_trial[0]['misc']['idxs'].keys():
|
| 39 |
+
hyperopt_trial[0]['misc']['idxs'][key] = [tid]
|
| 40 |
+
trials1.insert_trial_docs(hyperopt_trial)
|
| 41 |
+
trials1.refresh()
|
| 42 |
+
return trials1
|
| 43 |
+
|
| 44 |
+
np.random.seed()
|
| 45 |
+
|
| 46 |
+
# Load up all runs:
|
| 47 |
+
import glob
|
| 48 |
+
path = TRIALS_FOLDER + '/*.pkl'
|
| 49 |
+
files = 0
|
| 50 |
+
for fname in glob.glob(path):
|
| 51 |
+
|
| 52 |
+
trials_obj = pkl.load(open(fname, 'rb'))
|
| 53 |
+
n_trials = trials_obj['n']
|
| 54 |
+
trials_obj = trials_obj['trials']
|
| 55 |
+
if files == 0:
|
| 56 |
+
trials = trials_obj
|
| 57 |
+
else:
|
| 58 |
+
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
|
| 59 |
+
files += 1
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
print(files, 'trials merged')
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
best_loss = np.inf
|
| 66 |
+
best_trial = None
|
| 67 |
+
try:
|
| 68 |
+
trials
|
| 69 |
+
except NameError:
|
| 70 |
+
raise NameError("No trials loaded. Be sure to set the right folder")
|
| 71 |
+
|
| 72 |
+
# for trial in trials:
|
| 73 |
+
# if trial['result']['status'] == 'ok':
|
| 74 |
+
# loss = trial['result']['loss']
|
| 75 |
+
# if loss < best_loss:
|
| 76 |
+
# best_loss = loss
|
| 77 |
+
# best_trial = trial
|
| 78 |
+
|
| 79 |
+
# print(best_loss, best_trial['misc']['vals'])
|
| 80 |
+
#trials = sorted(trials, key=lambda x: (x['result']['loss'] if trials['result']['status'] == 'ok' else float('inf')))
|
| 81 |
+
|
| 82 |
+
clean_trials = []
|
| 83 |
+
for trial in trials:
|
| 84 |
+
clean_trials.append((trial['result']['loss'], trial['misc']['vals']))
|
| 85 |
+
|
| 86 |
+
clean_trials = sorted(clean_trials, key=lambda x: x[0])
|
| 87 |
+
|
| 88 |
+
for trial in clean_trials:
|
| 89 |
+
print(trial)
|
| 90 |
+
|
| 91 |
+
|