Spaces:
Build error
Build error
| import gradio as gr | |
| import os | |
| import tempfile | |
| import pandas as pd | |
| empty_df = pd.DataFrame( | |
| { | |
| "equation": [], | |
| "loss": [], | |
| "complexity": [], | |
| } | |
| ) | |
| os.system("bash install_pysr.sh") | |
| def greet( | |
| file_obj: tempfile._TemporaryFileWrapper, | |
| maxsize: int, | |
| col_to_fit: str, | |
| niterations: int, | |
| binary_operators: list, | |
| unary_operators: list, | |
| force_run: bool, | |
| ): | |
| if col_to_fit == "": | |
| return ( | |
| empty_df, | |
| "Please enter a column to predict!", | |
| ) | |
| if len(binary_operators) == 0 and len(unary_operators) == 0: | |
| return ( | |
| empty_df, | |
| "Please select at least one operator!", | |
| ) | |
| if file_obj is None: | |
| return ( | |
| empty_df, | |
| "Please upload a CSV file!", | |
| ) | |
| # Look at some statistics of the file: | |
| df = pd.read_csv(file_obj.name) | |
| if len(df) == 0: | |
| return ( | |
| empty_df, | |
| "The file is empty!", | |
| ) | |
| if len(df.columns) == 1: | |
| return ( | |
| empty_df, | |
| "The file has only one column!", | |
| ) | |
| if len(df) > 1000 and not force_run: | |
| return ( | |
| empty_df, | |
| "You have uploaded a file with more than 2000 rows. " | |
| "This will take very long to run. " | |
| "Please upload a subsample of the data, " | |
| "or check the box 'Ignore Warnings'." | |
| ) | |
| binary_operators = str(binary_operators).replace("'", '"') | |
| unary_operators = str(unary_operators).replace("'", '"') | |
| os.system( | |
| f"python run_pysr_and_save.py " | |
| f"--niterations {niterations} " | |
| f"--maxsize {maxsize} " | |
| f"--binary_operators '{binary_operators}' " | |
| f"--unary_operators '{unary_operators}' " | |
| f"--col_to_fit {col_to_fit} " | |
| f"--filename {file_obj.name}" | |
| ) | |
| df = pd.read_csv("pysr_output.csv") | |
| error_log = open("error.log", "r").read() | |
| return df, error_log | |
| def main(): | |
| demo = gr.Interface( | |
| fn=greet, | |
| description="Symbolic Regression with PySR. Watch search progress by clicking 'See logs'!", | |
| inputs=[ | |
| gr.inputs.File(label="Upload a CSV File"), | |
| gr.inputs.Textbox(label="Column to Predict", placeholder="y"), | |
| gr.inputs.Slider( | |
| minimum=1, | |
| maximum=1000, | |
| default=40, | |
| label="Number of Iterations", | |
| step=1, | |
| ), | |
| gr.inputs.Slider( | |
| minimum=7, | |
| maximum=35, | |
| default=20, | |
| label="Maximum Complexity", | |
| step=1, | |
| ), | |
| gr.inputs.CheckboxGroup( | |
| choices=["+", "-", "*", "/", "^"], | |
| label="Binary Operators", | |
| default=["+", "-", "*", "/"], | |
| ), | |
| gr.inputs.CheckboxGroup( | |
| choices=["sin", "cos", "exp", "log", "square", "cube", | |
| "sqrt", "abs", "tan"], | |
| label="Unary Operators", | |
| default=[], | |
| ), | |
| gr.inputs.Checkbox( | |
| default=False, | |
| label="Ignore Warnings", | |
| ) | |
| ], | |
| outputs=[ | |
| "dataframe", | |
| gr.outputs.Textbox(label="Error Log"), | |
| ], | |
| ) | |
| # Add file to the demo: | |
| demo.launch() | |
| if __name__ == "__main__": | |
| main() | |