depth2img / app.py
amankishore's picture
Fix UI
7f0156e
raw
history blame
8.05 kB
import gradio as gr
import torch
import os
from PIL import Image
import numpy as np
from diffusers import StableDiffusionDepth2ImgPipeline
from pathlib import Path
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
is_gpu_associated = torch.cuda.is_available()
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
).to(device)
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
'''
def pad_image(input_image):
pad_w, pad_h = np.max(((2, 2), np.ceil(
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
w, h = im_padded.size
if w == h:
return im_padded
elif w > h:
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
new_image.paste(im_padded, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
new_image.paste(im_padded, ((h - w) // 2, 0))
return new_image
def predict(input_image, prompt, negative_prompt, steps, num_samples, scale, seed, strength, depth_image=None):
if not is_gpu_associated:
raise gr.Error("Please associate a T4 GPU for this Space")
torch.cuda.empty_cache()
depth = None
if depth_image is not None:
depth_image = pad_image(depth_image)
depth_image = depth_image.resize((512, 512))
depth = np.array(depth_image.convert("L"))
depth = depth.astype(np.float32) / 255.0
depth = depth[None, None]
depth = torch.from_numpy(depth)
init_image = input_image.convert("RGB")
image = pad_image(init_image) # resize to integer multiple of 32
image = image.resize((512, 512))
result = dept2img(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
depth_image=depth,
seed=seed,
strength=strength,
num_inference_steps=steps,
guidance_scale=scale,
num_images_per_prompt=num_samples,
)
return result['images']
block = gr.Blocks().queue()
with block:
with gr.Box():
if is_gpu_associated:
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Depth2Img Web UI
</h1>
<br />
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/depth2img?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
<br />
<br />
<p style="margin-bottom: 10px; font-size: 94%">
Create variations of an image while preserving shape and depth!
</p>
</div>
''')
else:
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Depth2Img Web UI
</h1>
<br />
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/depth2img?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
<br />
<br />
<p style="margin-bottom: 10px; font-size: 94%">
Create variations of an image while preserving shape and depth!
</p>
<br />
<p>There's only one step left before you can run the app: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4 GPU</b> to it (via the Settings tab)</a> and run the app below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
</div>
''')
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
# depth_image = gr.Image(
# source='upload', type="pil", label="Depth image Optional", value=None)
depth_image = None
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Pompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=1,
maximum=100, value=50, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1
)
strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(
grid=[2], height="auto")
if is_gpu_associated:
gr.Examples(
examples=[
["./examples/original_iso.png", "hogwarts castle",
"", 50, 4, 10.0, 123123123, 0.8],
["./examples/original_sword.png", "flaming sword",
"", 50, 4, 9.0, 1734133747, 0.8],
],
inputs=[input_image, prompt, negative_prompt, steps,
num_samples, scale, seed, strength],
outputs=[gallery],
fn=predict,
cache_examples=True,
)
run_button.click(fn=predict, inputs=[input_image, prompt, negative_prompt,
steps, num_samples, scale, seed, strength], outputs=[gallery])
block.launch(show_api=False)