|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import gradio as gr | 
					
						
						|  | from huggingface_hub import hf_hub_download, login | 
					
						
						|  | from transformers import AutoModelForCausalLM, AutoTokenizer | 
					
						
						|  | from pptx import Presentation | 
					
						
						|  | from pptx.util import Inches, Pt | 
					
						
						|  | import torch | 
					
						
						|  | from llama_cpp import Llama | 
					
						
						|  | import time | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | TEXT_MODELS = { | 
					
						
						|  | "Utter-Project_EuroLLM-1.7B": "utter-project/EuroLLM-1.7B", | 
					
						
						|  | "Mistral Nemo 2407 (GGUF)": "MisterAI/Bartowski_MistralAI_Mistral-Nemo-Instruct-2407-IQ4_XS.gguf", | 
					
						
						|  | "Mixtral 8x7B": "mistralai/Mixtral-8x7B-v0.1", | 
					
						
						|  | "Lucie 7B": "OpenLLM-France/Lucie-7B" | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | PREPROMPT = """Vous êtes un assistant IA expert en création de présentations PowerPoint professionnelles. | 
					
						
						|  | Générez une présentation structurée et détaillée au format Markdown en suivant ce format EXACT: | 
					
						
						|  |  | 
					
						
						|  | TITRE: [Titre principal de la présentation] | 
					
						
						|  |  | 
					
						
						|  | DIAPO 1: | 
					
						
						|  | Titre: [Titre de la diapo] | 
					
						
						|  | Points: | 
					
						
						|  | - Point 1 | 
					
						
						|  | - Point 2 | 
					
						
						|  | - Point 3 | 
					
						
						|  |  | 
					
						
						|  | DIAPO 2: | 
					
						
						|  | Titre: [Titre de la diapo] | 
					
						
						|  | Points: | 
					
						
						|  | - Point 1 | 
					
						
						|  | - Point 2 | 
					
						
						|  | - Point 3 | 
					
						
						|  |  | 
					
						
						|  | [Continuez avec ce format pour chaque diapositive] | 
					
						
						|  |  | 
					
						
						|  | Analysez le texte suivant et créez une présentation professionnelle :""" | 
					
						
						|  |  | 
					
						
						|  | class ModelManager: | 
					
						
						|  | _instance = None | 
					
						
						|  |  | 
					
						
						|  | def __new__(cls): | 
					
						
						|  | if cls._instance is None: | 
					
						
						|  | cls._instance = super(ModelManager, cls).__new__(cls) | 
					
						
						|  | cls._instance.initialized = False | 
					
						
						|  | return cls._instance | 
					
						
						|  |  | 
					
						
						|  | def __init__(self): | 
					
						
						|  | if not self.initialized: | 
					
						
						|  | self.token = os.getenv('Authentification_HF') | 
					
						
						|  | if not self.token: | 
					
						
						|  | raise ValueError("Token d'authentification HuggingFace non trouvé") | 
					
						
						|  | login(self.token) | 
					
						
						|  | self.loaded_models = {} | 
					
						
						|  | self.loaded_tokenizers = {} | 
					
						
						|  | self.initialized = True | 
					
						
						|  |  | 
					
						
						|  | def get_model(self, model_name): | 
					
						
						|  | """Charge ou récupère un modèle déjà chargé""" | 
					
						
						|  | if model_name not in self.loaded_models: | 
					
						
						|  | print(f"Chargement du modèle {model_name}...") | 
					
						
						|  | model_id = TEXT_MODELS[model_name] | 
					
						
						|  |  | 
					
						
						|  | if model_id.endswith('.gguf'): | 
					
						
						|  | model_path = hf_hub_download( | 
					
						
						|  | repo_id=model_id.split('/')[0] + '/' + model_id.split('/')[1], | 
					
						
						|  | filename=model_id.split('/')[-1], | 
					
						
						|  | token=self.token | 
					
						
						|  | ) | 
					
						
						|  | self.loaded_models[model_name] = Llama( | 
					
						
						|  | model_path=model_path, | 
					
						
						|  | n_ctx=4096, | 
					
						
						|  | n_batch=512, | 
					
						
						|  | verbose=False | 
					
						
						|  | ) | 
					
						
						|  | print(f"Modèle GGUF {model_id} chargé avec succès!") | 
					
						
						|  | else: | 
					
						
						|  | self.loaded_tokenizers[model_name] = AutoTokenizer.from_pretrained(model_id, token=self.token) | 
					
						
						|  | self.loaded_models[model_name] = AutoModelForCausalLM.from_pretrained( | 
					
						
						|  | model_id, | 
					
						
						|  | torch_dtype=torch.bfloat16, | 
					
						
						|  | device_map="auto", | 
					
						
						|  | token=self.token | 
					
						
						|  | ) | 
					
						
						|  | print(f"Modèle Transformers {model_id} chargé avec succès!") | 
					
						
						|  |  | 
					
						
						|  | return self.loaded_models[model_name], self.loaded_tokenizers.get(model_name) | 
					
						
						|  |  | 
					
						
						|  | class PresentationGenerator: | 
					
						
						|  | def __init__(self): | 
					
						
						|  | self.model_manager = ModelManager() | 
					
						
						|  |  | 
					
						
						|  | def generate_text(self, prompt, model_name, temperature=0.7, max_tokens=4096): | 
					
						
						|  | """Génère le texte de la présentation""" | 
					
						
						|  | model, tokenizer = self.model_manager.get_model(model_name) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(model, Llama): | 
					
						
						|  | response = model( | 
					
						
						|  | prompt, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | echo=False | 
					
						
						|  | ) | 
					
						
						|  | return response['choices'][0]['text'] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | inputs = tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | truncation=True, | 
					
						
						|  | max_length=4096 | 
					
						
						|  | ).to(model.device) | 
					
						
						|  |  | 
					
						
						|  | outputs = model.generate( | 
					
						
						|  | **inputs, | 
					
						
						|  | max_new_tokens=max_tokens, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | do_sample=True, | 
					
						
						|  | pad_token_id=tokenizer.eos_token_id | 
					
						
						|  | ) | 
					
						
						|  | return tokenizer.decode(outputs[0], skip_special_tokens=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_presentation_content(self, content): | 
					
						
						|  | """Parse le contenu généré en sections pour les diapositives""" | 
					
						
						|  | slides = [] | 
					
						
						|  | current_slide = None | 
					
						
						|  |  | 
					
						
						|  | for line in content.split('\n'): | 
					
						
						|  | line = line.strip() | 
					
						
						|  | if line.startswith('TITRE:'): | 
					
						
						|  | slides.append({'type': 'title', 'title': line[6:].strip()}) | 
					
						
						|  | elif line.startswith('DIAPO'): | 
					
						
						|  | if current_slide: | 
					
						
						|  | slides.append(current_slide) | 
					
						
						|  | current_slide = {'type': 'content', 'title': '', 'points': []} | 
					
						
						|  | elif line.startswith('Titre:') and current_slide: | 
					
						
						|  | current_slide['title'] = line[6:].strip() | 
					
						
						|  | elif line.startswith('- ') and current_slide: | 
					
						
						|  | current_slide['points'].append(line[2:].strip()) | 
					
						
						|  |  | 
					
						
						|  | if current_slide: | 
					
						
						|  | slides.append(current_slide) | 
					
						
						|  |  | 
					
						
						|  | return slides | 
					
						
						|  |  | 
					
						
						|  | def create_presentation(self, slides): | 
					
						
						|  | """Crée la présentation PowerPoint avec texte uniquement""" | 
					
						
						|  | prs = Presentation() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | title_slide = prs.slides.add_slide(prs.slide_layouts[0]) | 
					
						
						|  | title_slide.shapes.title.text = slides[0]['title'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for slide in slides[1:]: | 
					
						
						|  | content_slide = prs.slides.add_slide(prs.slide_layouts[1]) | 
					
						
						|  | content_slide.shapes.title.text = slide['title'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if slide['points']: | 
					
						
						|  | body = content_slide.shapes.placeholders[1].text_frame | 
					
						
						|  | body.clear() | 
					
						
						|  | for point in slide['points']: | 
					
						
						|  | p = body.add_paragraph() | 
					
						
						|  | p.text = point | 
					
						
						|  | p.level = 0 | 
					
						
						|  |  | 
					
						
						|  | return prs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_skeleton(text, text_model_name, temperature, max_tokens): | 
					
						
						|  | """Génère le squelette de la présentation""" | 
					
						
						|  | try: | 
					
						
						|  | start_time = time.time() | 
					
						
						|  | generator = PresentationGenerator() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | full_prompt = PREPROMPT + "\n\n" + text | 
					
						
						|  | generated_content = generator.generate_text(full_prompt, text_model_name, temperature, max_tokens) | 
					
						
						|  |  | 
					
						
						|  | execution_time = time.time() - start_time | 
					
						
						|  | status = f"Squelette généré avec succès en {execution_time:.2f} secondes!" | 
					
						
						|  |  | 
					
						
						|  | return status, generated_content, gr.update(visible=True) | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Erreur lors de la génération: {str(e)}") | 
					
						
						|  | return f"Erreur: {str(e)}", None, gr.update(visible=False) | 
					
						
						|  |  | 
					
						
						|  | def create_presentation_file(generated_content): | 
					
						
						|  | """Crée le fichier PowerPoint à partir du contenu généré""" | 
					
						
						|  | try: | 
					
						
						|  | generator = PresentationGenerator() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | slides = generator.parse_presentation_content(generated_content) | 
					
						
						|  | prs = generator.create_presentation(slides) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_path = os.path.abspath("presentation.pptx") | 
					
						
						|  | prs.save(output_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not os.path.exists(output_path): | 
					
						
						|  | raise FileNotFoundError(f"Le fichier {output_path} n'a pas été créé correctement") | 
					
						
						|  |  | 
					
						
						|  | return output_path | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Erreur lors de la création du fichier: {str(e)}") | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(theme=gr.themes.Glass()) as demo: | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | """ | 
					
						
						|  | # Générateur de Présentations PowerPoint IA | 
					
						
						|  |  | 
					
						
						|  | Créez des présentations professionnelles automatiquement avec l'aide de l'IA. | 
					
						
						|  | """ | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(scale=1): | 
					
						
						|  | text_model_choice = gr.Dropdown( | 
					
						
						|  | choices=list(TEXT_MODELS.keys()), | 
					
						
						|  | value=list(TEXT_MODELS.keys())[0], | 
					
						
						|  | label="Modèle de génération de texte" | 
					
						
						|  | ) | 
					
						
						|  | temperature = gr.Slider( | 
					
						
						|  | minimum=0.1, | 
					
						
						|  | maximum=1.0, | 
					
						
						|  | value=0.7, | 
					
						
						|  | step=0.1, | 
					
						
						|  | label="Température" | 
					
						
						|  | ) | 
					
						
						|  | max_tokens = gr.Slider( | 
					
						
						|  | minimum=1000, | 
					
						
						|  | maximum=4096, | 
					
						
						|  | value=2048, | 
					
						
						|  | step=256, | 
					
						
						|  | label="Tokens maximum" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(scale=2): | 
					
						
						|  | input_text = gr.Textbox( | 
					
						
						|  | lines=10, | 
					
						
						|  | label="Votre texte", | 
					
						
						|  | placeholder="Décrivez le contenu que vous souhaitez pour votre présentation..." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | generate_skeleton_btn = gr.Button("Générer le Squelette de la Présentation", variant="primary") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | status_output = gr.Textbox( | 
					
						
						|  | label="Statut", | 
					
						
						|  | lines=2 | 
					
						
						|  | ) | 
					
						
						|  | generated_content = gr.Textbox( | 
					
						
						|  | label="Contenu généré", | 
					
						
						|  | lines=10, | 
					
						
						|  | show_copy_button=True | 
					
						
						|  | ) | 
					
						
						|  | create_presentation_btn = gr.Button("Créer Présentation", visible=False) | 
					
						
						|  | output_file = gr.File( | 
					
						
						|  | label="Présentation PowerPoint" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | generate_skeleton_btn.click( | 
					
						
						|  | fn=generate_skeleton, | 
					
						
						|  | inputs=[ | 
					
						
						|  | input_text, | 
					
						
						|  | text_model_choice, | 
					
						
						|  | temperature, | 
					
						
						|  | max_tokens | 
					
						
						|  | ], | 
					
						
						|  | outputs=[ | 
					
						
						|  | status_output, | 
					
						
						|  | generated_content, | 
					
						
						|  | create_presentation_btn | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | create_presentation_btn.click( | 
					
						
						|  | fn=create_presentation_file, | 
					
						
						|  | inputs=[generated_content], | 
					
						
						|  | outputs=[output_file] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | demo.launch() | 
					
						
						|  |  | 
					
						
						|  |  |