MoHamdyy commited on
Commit
4cd6538
·
1 Parent(s): 772925a

initial commit

Browse files
Files changed (1) hide show
  1. app.py +99 -63
app.py CHANGED
@@ -442,112 +442,148 @@ print("--- Model Loading Complete ---")
442
 
443
 
444
  # --- Part 3: Full Pipeline Function for Gradio ---
445
- @spaces.GPU # <<< --- APPLY THE DECORATOR HERE --- <<<
446
- def full_speech_translation_pipeline_gradio(audio_input_path):
447
  # This print will show the device context *inside* the decorated function
448
  # For ZeroGPU, this should ideally show 'cuda:X' when the function is executed
449
- current_processing_device = next(stt_model.parameters()).device if stt_model else "CPU (STT model not loaded)"
450
- print(f"--- @spaces.GPU function: Pipeline running on device: {current_processing_device} ---")
 
 
 
 
 
451
 
452
 
453
  if not all([TTS_MODEL, stt_processor, stt_model, mt_tokenizer, mt_model]):
454
  error_msg = "Critical Error: One or more models failed to load during Space initialization. Cannot process."
455
  print(error_msg)
456
- # Raising gr.Error is better for UI feedback
457
- raise gr.Error(error_msg)
458
-
459
 
460
- if audio_input_path is None:
461
- # This case should ideally be handled by Gradio's input validation or a check before calling.
462
- # If it still occurs, provide a clear message.
463
  raise gr.Error("No audio file provided. Please upload an audio file.")
464
 
 
 
 
 
 
 
 
 
465
  print(f"--- GRADIO PIPELINE START (GPU context): Processing {audio_input_path} ---")
466
 
467
- # STT Stage
468
  arabic_transcript = "STT Error: Processing failed."
469
  try:
470
  print("STT: Loading and resampling audio...")
471
  wav, sr = torchaudio.load(audio_input_path)
472
- if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True)
 
 
 
473
  target_sr_stt = stt_processor.feature_extractor.sampling_rate
474
- if sr != target_sr_stt: wav = torchaudio.transforms.Resample(sr, target_sr_stt)(wav)
475
- # Move wav to the STT model's device *before* converting to numpy if STT model is on GPU
476
- audio_array_stt = wav.to(DEVICE).squeeze().cpu().numpy() # Process on DEVICE, then to CPU for numpy
 
 
 
 
 
477
 
478
  print("STT: Extracting features and transcribing...")
479
- # Ensure inputs are on the same device as the model
 
480
  inputs_stt = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
481
  forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
 
482
  with torch.no_grad():
483
- generated_ids = stt_model.generate(inputs_stt, forced_decoder_ids=forced_ids, max_new_tokens=256)
484
  arabic_transcript = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
485
  print(f"STT Output: {arabic_transcript}")
486
  except Exception as e:
487
  print(f"STT Error: {e}")
488
- raise gr.Error(f"STT processing failed: {e}")
489
-
490
 
491
- # TTT Stage
492
  english_translation = "TTT Error: Processing failed."
493
  if arabic_transcript and not arabic_transcript.startswith("STT Error"):
494
  try:
495
  print("TTT: Translating to English...")
496
- batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True, truncation=True).to(DEVICE)
 
 
 
 
497
  with torch.no_grad():
498
- translated_ids = mt_model.generate(**batch, max_length=512) # max_new_tokens can also be used
499
  english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
500
  print(f"TTT Output: {english_translation}")
501
  except Exception as e:
502
  print(f"TTT Error: {e}")
503
- raise gr.Error(f"TTT processing failed: {e}")
504
-
505
- else:
506
- if not arabic_transcript or arabic_transcript.startswith("STT Error"):
507
- english_translation = "(Skipped TTT due to STT failure or empty STT output)"
 
508
  print(english_translation)
509
 
510
 
511
- # TTS Stage
512
- output_tts_audio_filepath = None
513
- if english_translation and not english_translation.startswith("TTT Error") and TTS_MODEL:
514
- try:
515
- print("TTS: Synthesizing English speech...")
516
- if not english_translation.strip():
517
- print("TTS Warning: Empty string for synthesis. Skipping TTS.")
518
- else:
519
- sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
520
- # max_length for TTS inference refers to max output mel frames
521
- generated_mel = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time - 50, stop_token_threshold=0.5)
522
-
523
- print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
524
- if generated_mel is not None and generated_mel.numel() > 0 and generated_mel.shape[1] > 0 :
525
- # TTS model's inverse_mel_spec_to_wav expects mel on DEVICE and returns wav on CPU
526
- # The mel from inference should be [N, mel_len, mel_bins]
527
- # inverse_mel_spec_to_wav might expect [mel_bins, mel_len]
528
- mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1) # to [mel_len, mel_bins]
529
- audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder) # This function handles .to(DEVICE) internally
530
- synthesized_audio_np = audio_tensor.cpu().numpy() # Ensure output is on CPU for soundfile
531
- print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
532
-
533
- timestamp = int(time.time()*1000) # more unique
534
- output_tts_audio_filepath = f"output_audio_{timestamp}.wav"
535
- sf.write(output_tts_audio_filepath, synthesized_audio_np, hp.sr)
536
- print(f"TTS: Synthesized audio saved to: {output_tts_audio_filepath}")
537
  else:
538
- print("TTS Warning: Generated mel spectrogram was empty or invalid.")
539
- except Exception as e:
540
- print(f"TTS Error: {e}")
541
- # Do not raise gr.Error here if a partial result (text) is still useful
542
- # output_tts_audio_filepath will remain None
543
- english_translation += f" (TTS Error: {e})" # Append error to text
544
- else:
545
- if not TTS_MODEL: print("TTS SKIPPED: Model not loaded.")
546
- elif not (english_translation and not english_translation.startswith("TTT Error")):
547
- print("TTS SKIPPED: (Due to TTT failure or empty TTT output)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548
 
549
 
550
  print(f"--- GRADIO PIPELINE END (GPU context) ---")
 
551
  return arabic_transcript, english_translation, output_tts_audio_filepath
552
 
553
 
 
442
 
443
 
444
  # --- Part 3: Full Pipeline Function for Gradio ---
445
+ @spaces.GPU # For ZeroGPU execution context
446
+ def full_speech_translation_pipeline_gradio(audio_input_path: str):
447
  # This print will show the device context *inside* the decorated function
448
  # For ZeroGPU, this should ideally show 'cuda:X' when the function is executed
449
+ # Ensure models are loaded and on the correct device before this function is called.
450
+ # The global DEVICE variable should reflect the GPU if available.
451
+ if stt_model: # Check if at least one model is loaded to get device
452
+ current_pipeline_device = next(stt_model.parameters()).device
453
+ print(f"--- @spaces.GPU function: Pipeline attempting to run on device: {current_pipeline_device} ---")
454
+ else:
455
+ print(f"--- @spaces.GPU function: STT model not loaded, cannot determine precise pipeline device yet. Target: {DEVICE} ---")
456
 
457
 
458
  if not all([TTS_MODEL, stt_processor, stt_model, mt_tokenizer, mt_model]):
459
  error_msg = "Critical Error: One or more models failed to load during Space initialization. Cannot process."
460
  print(error_msg)
461
+ raise gr.Error(error_msg) # Use Gradio's error for better UI feedback
 
 
462
 
463
+ if audio_input_path is None: # Gradio sends None if no file
 
 
464
  raise gr.Error("No audio file provided. Please upload an audio file.")
465
 
466
+ # Check if the file path actually exists (Gradio should handle temp file creation)
467
+ # This check might be redundant if Gradio always provides a valid temp path for uploaded files.
468
+ if not os.path.exists(audio_input_path):
469
+ error_msg = f"Error: Audio file path provided by Gradio does not exist: {audio_input_path}"
470
+ print(error_msg)
471
+ raise gr.Error("Internal error: Audio file path not found.")
472
+
473
+
474
  print(f"--- GRADIO PIPELINE START (GPU context): Processing {audio_input_path} ---")
475
 
476
+ # STT Stage (aligning with your original logic)
477
  arabic_transcript = "STT Error: Processing failed."
478
  try:
479
  print("STT: Loading and resampling audio...")
480
  wav, sr = torchaudio.load(audio_input_path)
481
+ if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True) # Ensure mono
482
+
483
+ # Ensure stt_processor is available
484
+ if not stt_processor: raise gr.Error("STT Processor not loaded.")
485
  target_sr_stt = stt_processor.feature_extractor.sampling_rate
486
+
487
+ if sr != target_sr_stt:
488
+ # Resample op can be on CPU or GPU. If wav is already on GPU, it might be faster.
489
+ # However, for simplicity and consistency with original, let's keep it default (CPU).
490
+ resampler = torchaudio.transforms.Resample(sr, target_sr_stt)
491
+ wav = resampler(wav)
492
+
493
+ audio_array_stt = wav.squeeze().cpu().numpy() # Whisper processor expects NumPy array
494
 
495
  print("STT: Extracting features and transcribing...")
496
+ # Ensure stt_model is available
497
+ if not stt_model: raise gr.Error("STT Model not loaded.")
498
  inputs_stt = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
499
  forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
500
+
501
  with torch.no_grad():
502
+ generated_ids = stt_model.generate(inputs_stt, forced_decoder_ids=forced_ids, max_length=448) # Using your original max_length
503
  arabic_transcript = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
504
  print(f"STT Output: {arabic_transcript}")
505
  except Exception as e:
506
  print(f"STT Error: {e}")
507
+ raise gr.Error(f"STT processing failed: {str(e)}") # Show error in Gradio UI
 
508
 
509
+ # TTT Stage (aligning with your original logic)
510
  english_translation = "TTT Error: Processing failed."
511
  if arabic_transcript and not arabic_transcript.startswith("STT Error"):
512
  try:
513
  print("TTT: Translating to English...")
514
+ # Ensure mt_tokenizer and mt_model are available
515
+ if not mt_tokenizer: raise gr.Error("Marian Tokenizer not loaded.")
516
+ if not mt_model: raise gr.Error("Marian Model not loaded.")
517
+
518
+ batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True, truncation=True).to(DEVICE) # Added truncation
519
  with torch.no_grad():
520
+ translated_ids = mt_model.generate(**batch, max_length=512)
521
  english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
522
  print(f"TTT Output: {english_translation}")
523
  except Exception as e:
524
  print(f"TTT Error: {e}")
525
+ raise gr.Error(f"TTT processing failed: {str(e)}") # Show error in Gradio UI
526
+ elif arabic_transcript.startswith("STT Error"):
527
+ english_translation = "(Skipped TTT due to STT error)" # More specific message
528
+ print(english_translation)
529
+ else: # Handles empty arabic_transcript case
530
+ english_translation = "(Skipped TTT due to empty STT output)"
531
  print(english_translation)
532
 
533
 
534
+ # TTS Stage (aligning with your original logic for inference call)
535
+ output_tts_audio_filepath = None # Initialize for Gradio output
536
+ if english_translation and not english_translation.startswith("TTT Error") and not english_translation.startswith("(Skipped TTT"):
537
+ if TTS_MODEL:
538
+ try:
539
+ print("TTS: Synthesizing English speech...")
540
+ if not english_translation.strip():
541
+ print("TTS Warning: Empty string provided for synthesis. Skipping TTS.")
542
+ # No gr.Error here, just skip TTS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543
  else:
544
+ sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
545
+
546
+ # Call TTS_MODEL.inference exactly as in your original, working pipeline
547
+ # This assumes your TTS_MODEL.inference returns (mel_spectrogram, other_data_like_stop_tokens)
548
+ generated_mel, _ = TTS_MODEL.inference(
549
+ sequence,
550
+ max_length=hp.max_mel_time-20, # Your original max_length
551
+ stop_token_threshold=0.5 # Your original threshold
552
+ # with_tqdm=False # Not needed for Gradio backend
553
+ )
554
+
555
+ print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
556
+ if generated_mel is not None and generated_mel.numel() > 0 and generated_mel.shape[1] > 0: # Check time dimension
557
+ # Your original processing of mel_for_vocoder
558
+ mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1)
559
+ audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder) # This needs to be correct for your model
560
+ synthesized_audio_np = audio_tensor.cpu().numpy()
561
+ print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
562
+
563
+ # Save to a temporary file for Gradio Audio output
564
+ timestamp = int(time.time()*1000) # For a somewhat unique filename
565
+ output_tts_audio_filepath = f"synthesized_speech_{timestamp}.wav"
566
+ sf.write(output_tts_audio_filepath, synthesized_audio_np, hp.sr)
567
+ print(f"TTS: Synthesized audio saved to: {output_tts_audio_filepath}")
568
+ else:
569
+ print("TTS Warning: Generated mel spectrogram was empty or invalid.")
570
+ # Do not raise gr.Error, let the text pass through.
571
+ # output_tts_audio_filepath remains None.
572
+ except Exception as e:
573
+ print(f"TTS Error: {e}")
574
+ # Append error to text, don't stop the whole process if text is available
575
+ english_translation += f" (TTS synthesis failed: {str(e)})"
576
+ # output_tts_audio_filepath remains None.
577
+ else:
578
+ print("TTS SKIPPED: TTS_MODEL not loaded.")
579
+ elif not TTS_MODEL: # If TTS model didn't load but we reached here
580
+ print("TTS SKIPPED: Model not loaded.")
581
+ else: # If english_translation was invalid for TTS
582
+ print(f"TTS SKIPPED: English text was '{english_translation}'.")
583
 
584
 
585
  print(f"--- GRADIO PIPELINE END (GPU context) ---")
586
+ # Return values in the order expected by Gradio's `outputs` components
587
  return arabic_transcript, english_translation, output_tts_audio_filepath
588
 
589