Spaces:
Running
on
Zero
Running
on
Zero
initial commit
Browse files- README.md +1 -1
- app.py +573 -0
- requirements.txt +24 -0
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: Translation Stack
|
3 |
emoji: 🏢
|
4 |
-
colorFrom:
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.33.1
|
|
|
1 |
---
|
2 |
title: Translation Stack
|
3 |
emoji: 🏢
|
4 |
+
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.33.1
|
app.py
ADDED
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import time
|
4 |
+
import random
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
import shutil
|
8 |
+
# import base64 # Not directly needed for Gradio filepath output
|
9 |
+
|
10 |
+
# Torch and Audio
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
# import torch.optim as optim # Not needed for inference
|
14 |
+
# from torch.utils.data import Dataset, DataLoader # Not needed for inference
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import torchaudio
|
17 |
+
import librosa
|
18 |
+
# import librosa.display # Not used in pipeline
|
19 |
+
|
20 |
+
# Text and Audio Processing
|
21 |
+
from unidecode import unidecode
|
22 |
+
# from inflect import engine # Not explicitly used in pipeline, consider removing
|
23 |
+
# import pydub # Not explicitly used in pipeline, consider removing
|
24 |
+
import soundfile as sf
|
25 |
+
|
26 |
+
# Transformers
|
27 |
+
from transformers import (
|
28 |
+
WhisperProcessor, WhisperForConditionalGeneration,
|
29 |
+
MarianTokenizer, MarianMTModel,
|
30 |
+
)
|
31 |
+
from huggingface_hub import hf_hub_download
|
32 |
+
|
33 |
+
# Gradio and Hugging Face Spaces
|
34 |
+
import gradio as gr
|
35 |
+
import spaces # <<< --- ADD THIS IMPORT --- <<<
|
36 |
+
|
37 |
+
# --- Global Configuration & Device Setup ---
|
38 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
+
print(f"--- Initializing on device: {DEVICE} ---") # This will run when the Space builds/starts
|
40 |
+
|
41 |
+
# --- Part 1: TTS Model Components (Your Custom TTS) ---
|
42 |
+
# ... (Keep all your Hyperparams, text_to_seq, audio processing for TTS, and Model class definitions:
|
43 |
+
# EncoderBlock, DecoderBlock, EncoderPreNet, PostNet, DecoderPreNet, TransformerTTS)
|
44 |
+
# ... (Ensure TransformerTTS and its sub-modules are correctly defined as in your previous code)
|
45 |
+
# --- (Start of your model definitions - make sure this is complete from your previous code) ---
|
46 |
+
class Hyperparams:
|
47 |
+
seed = 42
|
48 |
+
csv_path = "path/to/metadata.csv"
|
49 |
+
wav_path = "path/to/wavs"
|
50 |
+
symbols = [
|
51 |
+
'EOS', ' ', '!', ',', '-', '.', ';', '?', 'a', 'b', 'c', 'd', 'e', 'f',
|
52 |
+
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
|
53 |
+
't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'â', 'è', 'é', 'ê', 'ü',
|
54 |
+
'’', '“', '”'
|
55 |
+
]
|
56 |
+
sr = 22050
|
57 |
+
n_fft = 2048
|
58 |
+
n_stft = int((n_fft//2) + 1)
|
59 |
+
hop_length = int(n_fft/8.0)
|
60 |
+
win_length = int(n_fft/2.0)
|
61 |
+
mel_freq = 128
|
62 |
+
max_mel_time = 1024
|
63 |
+
power = 2.0
|
64 |
+
text_num_embeddings = 2*len(symbols)
|
65 |
+
embedding_size = 256
|
66 |
+
encoder_embedding_size = 512
|
67 |
+
dim_feedforward = 1024
|
68 |
+
postnet_embedding_size = 1024
|
69 |
+
encoder_kernel_size = 3
|
70 |
+
postnet_kernel_size = 5
|
71 |
+
ampl_multiplier = 10.0
|
72 |
+
ampl_amin = 1e-10
|
73 |
+
db_multiplier = 1.0
|
74 |
+
ampl_ref = 1.0
|
75 |
+
ampl_power = 1.0
|
76 |
+
max_db = 100
|
77 |
+
scale_db = 10
|
78 |
+
|
79 |
+
hp = Hyperparams()
|
80 |
+
|
81 |
+
symbol_to_id = {s: i for i, s in enumerate(hp.symbols)}
|
82 |
+
def text_to_seq(text):
|
83 |
+
text = text.lower()
|
84 |
+
text = unidecode(text)
|
85 |
+
seq = []
|
86 |
+
for s in text:
|
87 |
+
_id = symbol_to_id.get(s, None)
|
88 |
+
if _id is not None:
|
89 |
+
seq.append(_id)
|
90 |
+
seq.append(symbol_to_id["EOS"])
|
91 |
+
return torch.IntTensor(seq)
|
92 |
+
|
93 |
+
spec_transform = torchaudio.transforms.Spectrogram(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length, power=hp.power)
|
94 |
+
mel_scale_transform = torchaudio.transforms.MelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft)
|
95 |
+
mel_inverse_transform = torchaudio.transforms.InverseMelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft).to(DEVICE)
|
96 |
+
griffnlim_transform = torchaudio.transforms.GriffinLim(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length).to(DEVICE)
|
97 |
+
|
98 |
+
def pow_to_db_mel_spec(mel_spec):
|
99 |
+
mel_spec = torchaudio.functional.amplitude_to_DB(mel_spec, multiplier=hp.ampl_multiplier, amin=hp.ampl_amin, db_multiplier=hp.db_multiplier, top_db=hp.max_db)
|
100 |
+
mel_spec = mel_spec/hp.scale_db
|
101 |
+
return mel_spec
|
102 |
+
|
103 |
+
def db_to_power_mel_spec(mel_spec):
|
104 |
+
mel_spec = mel_spec*hp.scale_db
|
105 |
+
mel_spec = torchaudio.functional.DB_to_amplitude(mel_spec, ref=hp.ampl_ref, power=hp.ampl_power)
|
106 |
+
return mel_spec
|
107 |
+
|
108 |
+
def inverse_mel_spec_to_wav(mel_spec):
|
109 |
+
power_mel_spec = db_to_power_mel_spec(mel_spec.to(DEVICE))
|
110 |
+
spectrogram = mel_inverse_transform(power_mel_spec)
|
111 |
+
pseudo_wav = griffnlim_transform(spectrogram)
|
112 |
+
return pseudo_wav
|
113 |
+
|
114 |
+
def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.BoolTensor:
|
115 |
+
ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length)
|
116 |
+
range_tensor = ones.cumsum(dim=1)
|
117 |
+
return sequence_lengths.unsqueeze(1) >= range_tensor
|
118 |
+
|
119 |
+
class EncoderBlock(nn.Module): # Your EncoderBlock definition
|
120 |
+
def __init__(self):
|
121 |
+
super(EncoderBlock, self).__init__()
|
122 |
+
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
123 |
+
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
|
124 |
+
self.dropout_1 = torch.nn.Dropout(0.1)
|
125 |
+
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
126 |
+
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
|
127 |
+
self.dropout_2 = torch.nn.Dropout(0.1)
|
128 |
+
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
|
129 |
+
self.dropout_3 = torch.nn.Dropout(0.1)
|
130 |
+
def forward(self, x, attn_mask=None, key_padding_mask=None):
|
131 |
+
x_out = self.norm_1(x)
|
132 |
+
x_out, _ = self.attn(query=x_out, key=x_out, value=x_out, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
|
133 |
+
x_out = self.dropout_1(x_out)
|
134 |
+
x = x + x_out
|
135 |
+
x_out = self.norm_2(x)
|
136 |
+
x_out = self.linear_1(x_out)
|
137 |
+
x_out = F.relu(x_out)
|
138 |
+
x_out = self.dropout_2(x_out)
|
139 |
+
x_out = self.linear_2(x_out)
|
140 |
+
x_out = self.dropout_3(x_out)
|
141 |
+
x = x + x_out
|
142 |
+
return x
|
143 |
+
|
144 |
+
class DecoderBlock(nn.Module): # Your DecoderBlock definition
|
145 |
+
def __init__(self):
|
146 |
+
super(DecoderBlock, self).__init__()
|
147 |
+
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
148 |
+
self.self_attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
|
149 |
+
self.dropout_1 = torch.nn.Dropout(0.1)
|
150 |
+
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
151 |
+
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
|
152 |
+
self.dropout_2 = torch.nn.Dropout(0.1)
|
153 |
+
self.norm_3 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
154 |
+
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
|
155 |
+
self.dropout_3 = torch.nn.Dropout(0.1)
|
156 |
+
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
|
157 |
+
self.dropout_4 = torch.nn.Dropout(0.1)
|
158 |
+
def forward(self, x, memory, x_attn_mask=None, x_key_padding_mask=None, memory_attn_mask=None, memory_key_padding_mask=None):
|
159 |
+
x_out, _ = self.self_attn(query=x, key=x, value=x, attn_mask=x_attn_mask, key_padding_mask=x_key_padding_mask)
|
160 |
+
x_out = self.dropout_1(x_out)
|
161 |
+
x = self.norm_1(x + x_out)
|
162 |
+
x_out, _ = self.attn(query=x, key=memory, value=memory, attn_mask=memory_attn_mask, key_padding_mask=memory_key_padding_mask)
|
163 |
+
x_out = self.dropout_2(x_out)
|
164 |
+
x = self.norm_2(x + x_out)
|
165 |
+
x_out = self.linear_1(x)
|
166 |
+
x_out = F.relu(x_out)
|
167 |
+
x_out = self.dropout_3(x_out)
|
168 |
+
x_out = self.linear_2(x_out)
|
169 |
+
x_out = self.dropout_4(x_out)
|
170 |
+
x = self.norm_3(x + x_out)
|
171 |
+
return x
|
172 |
+
|
173 |
+
class EncoderPreNet(nn.Module): # Your EncoderPreNet definition
|
174 |
+
def __init__(self):
|
175 |
+
super(EncoderPreNet, self).__init__()
|
176 |
+
self.embedding = nn.Embedding(num_embeddings=hp.text_num_embeddings, embedding_dim=hp.encoder_embedding_size)
|
177 |
+
self.linear_1 = nn.Linear(hp.encoder_embedding_size, hp.encoder_embedding_size)
|
178 |
+
self.linear_2 = nn.Linear(hp.encoder_embedding_size, hp.embedding_size)
|
179 |
+
self.conv_1 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
|
180 |
+
self.bn_1 = nn.BatchNorm1d(hp.encoder_embedding_size)
|
181 |
+
self.dropout_1 = torch.nn.Dropout(0.5)
|
182 |
+
self.conv_2 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
|
183 |
+
self.bn_2 = nn.BatchNorm1d(hp.encoder_embedding_size)
|
184 |
+
self.dropout_2 = torch.nn.Dropout(0.5)
|
185 |
+
self.conv_3 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
|
186 |
+
self.bn_3 = nn.BatchNorm1d(hp.encoder_embedding_size)
|
187 |
+
self.dropout_3 = torch.nn.Dropout(0.5)
|
188 |
+
def forward(self, text):
|
189 |
+
x = self.embedding(text)
|
190 |
+
x = self.linear_1(x)
|
191 |
+
x = x.transpose(2, 1)
|
192 |
+
x = self.conv_1(x)
|
193 |
+
x = self.bn_1(x); x = F.relu(x); x = self.dropout_1(x)
|
194 |
+
x = self.conv_2(x)
|
195 |
+
x = self.bn_2(x); x = F.relu(x); x = self.dropout_2(x)
|
196 |
+
x = self.conv_3(x)
|
197 |
+
x = self.bn_3(x); x = F.relu(x); x = self.dropout_3(x)
|
198 |
+
x = x.transpose(1, 2)
|
199 |
+
x = self.linear_2(x)
|
200 |
+
return x
|
201 |
+
|
202 |
+
class PostNet(nn.Module): # Your PostNet definition
|
203 |
+
def __init__(self):
|
204 |
+
super(PostNet, self).__init__()
|
205 |
+
self.conv_1 = nn.Conv1d(hp.mel_freq, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
206 |
+
self.bn_1 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
207 |
+
self.dropout_1 = torch.nn.Dropout(0.5)
|
208 |
+
self.conv_2 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
209 |
+
self.bn_2 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
210 |
+
self.dropout_2 = torch.nn.Dropout(0.5)
|
211 |
+
self.conv_3 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
212 |
+
self.bn_3 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
213 |
+
self.dropout_3 = torch.nn.Dropout(0.5)
|
214 |
+
self.conv_4 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
215 |
+
self.bn_4 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
216 |
+
self.dropout_4 = torch.nn.Dropout(0.5)
|
217 |
+
self.conv_5 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
218 |
+
self.bn_5 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
219 |
+
self.dropout_5 = torch.nn.Dropout(0.5)
|
220 |
+
self.conv_6 = nn.Conv1d(hp.postnet_embedding_size, hp.mel_freq, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
221 |
+
self.bn_6 = nn.BatchNorm1d(hp.mel_freq)
|
222 |
+
self.dropout_6 = torch.nn.Dropout(0.5)
|
223 |
+
def forward(self, x):
|
224 |
+
x_orig = x # Store original for residual connection if postnet predicts residual
|
225 |
+
x = x.transpose(2, 1)
|
226 |
+
x = self.conv_1(x); x = self.bn_1(x); x = torch.tanh(x); x = self.dropout_1(x)
|
227 |
+
x = self.conv_2(x); x = self.bn_2(x); x = torch.tanh(x); x = self.dropout_2(x)
|
228 |
+
x = self.conv_3(x); x = self.bn_3(x); x = torch.tanh(x); x = self.dropout_3(x)
|
229 |
+
x = self.conv_4(x); x = self.bn_4(x); x = torch.tanh(x); x = self.dropout_4(x)
|
230 |
+
x = self.conv_5(x); x = self.bn_5(x); x = torch.tanh(x); x = self.dropout_5(x)
|
231 |
+
x = self.conv_6(x); x = self.bn_6(x); x = self.dropout_6(x) # No Tanh on last layer for mel usually
|
232 |
+
x = x.transpose(1, 2)
|
233 |
+
return x # This is the residual, should be added to original mel_linear
|
234 |
+
|
235 |
+
class DecoderPreNet(nn.Module): # Your DecoderPreNet definition
|
236 |
+
def __init__(self):
|
237 |
+
super(DecoderPreNet, self).__init__()
|
238 |
+
self.linear_1 = nn.Linear(hp.mel_freq, hp.embedding_size)
|
239 |
+
self.linear_2 = nn.Linear(hp.embedding_size, hp.embedding_size)
|
240 |
+
def forward(self, x):
|
241 |
+
x = self.linear_1(x)
|
242 |
+
x = F.relu(x)
|
243 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
244 |
+
x = self.linear_2(x)
|
245 |
+
x = F.relu(x)
|
246 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
247 |
+
return x
|
248 |
+
|
249 |
+
class TransformerTTS(nn.Module): # Your TransformerTTS definition
|
250 |
+
def __init__(self, device=DEVICE):
|
251 |
+
super(TransformerTTS, self).__init__()
|
252 |
+
self.encoder_prenet = EncoderPreNet()
|
253 |
+
self.decoder_prenet = DecoderPreNet()
|
254 |
+
self.postnet = PostNet()
|
255 |
+
self.pos_encoding = nn.Embedding(num_embeddings=hp.max_mel_time, embedding_dim=hp.embedding_size)
|
256 |
+
self.encoder_block_1 = EncoderBlock()
|
257 |
+
self.encoder_block_2 = EncoderBlock()
|
258 |
+
self.encoder_block_3 = EncoderBlock()
|
259 |
+
self.decoder_block_1 = DecoderBlock()
|
260 |
+
self.decoder_block_2 = DecoderBlock()
|
261 |
+
self.decoder_block_3 = DecoderBlock()
|
262 |
+
self.linear_1 = nn.Linear(hp.embedding_size, hp.mel_freq)
|
263 |
+
self.linear_2 = nn.Linear(hp.embedding_size, 1) # Stop token
|
264 |
+
self.norm_memory = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
265 |
+
self.device = device
|
266 |
+
|
267 |
+
def forward(self, text, text_len, mel, mel_len): # For training/teacher-forcing
|
268 |
+
# ... (Your detailed forward pass for training, with all masks)
|
269 |
+
N = text.shape[0]; S = text.shape[1]; TIME = mel.shape[1]
|
270 |
+
current_device = text.device
|
271 |
+
|
272 |
+
src_key_padding_mask = torch.zeros((N, S), device=current_device, dtype=torch.bool).masked_fill(~mask_from_seq_lengths(text_len, max_length=S), True)
|
273 |
+
src_mask = None # Typically encoder self-attention doesn't use a causal mask
|
274 |
+
|
275 |
+
tgt_key_padding_mask = torch.zeros((N, TIME), device=current_device, dtype=torch.bool).masked_fill(~mask_from_seq_lengths(mel_len, max_length=TIME), True)
|
276 |
+
tgt_mask = torch.zeros((TIME, TIME), device=current_device).masked_fill(torch.triu(torch.full((TIME, TIME), True, device=current_device, dtype=torch.bool), diagonal=1), float("-inf"))
|
277 |
+
memory_mask = None # Cross-attention mask, typically not needed unless specific structure
|
278 |
+
|
279 |
+
text_x = self.encoder_prenet(text)
|
280 |
+
pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time, device=current_device))
|
281 |
+
text_s_dim = text_x.shape[1]
|
282 |
+
text_x = text_x + pos_codes[:text_s_dim]
|
283 |
+
|
284 |
+
text_x = self.encoder_block_1(text_x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)
|
285 |
+
text_x = self.encoder_block_2(text_x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)
|
286 |
+
text_x = self.encoder_block_3(text_x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)
|
287 |
+
memory = self.norm_memory(text_x)
|
288 |
+
|
289 |
+
mel_x = self.decoder_prenet(mel)
|
290 |
+
mel_time_dim = mel_x.shape[1]
|
291 |
+
mel_x = mel_x + pos_codes[:mel_time_dim]
|
292 |
+
|
293 |
+
mel_x = self.decoder_block_1(x=mel_x, memory=memory, x_attn_mask=tgt_mask, x_key_padding_mask=tgt_key_padding_mask, memory_attn_mask=memory_mask, memory_key_padding_mask=src_key_padding_mask)
|
294 |
+
mel_x = self.decoder_block_2(x=mel_x, memory=memory, x_attn_mask=tgt_mask, x_key_padding_mask=tgt_key_padding_mask, memory_attn_mask=memory_mask, memory_key_padding_mask=src_key_padding_mask)
|
295 |
+
mel_x = self.decoder_block_3(x=mel_x, memory=memory, x_attn_mask=tgt_mask, x_key_padding_mask=tgt_key_padding_mask, memory_attn_mask=memory_mask, memory_key_padding_mask=src_key_padding_mask)
|
296 |
+
|
297 |
+
mel_linear = self.linear_1(mel_x)
|
298 |
+
mel_postnet_residual = self.postnet(mel_linear) # Postnet predicts residual
|
299 |
+
mel_postnet = mel_linear + mel_postnet_residual
|
300 |
+
|
301 |
+
stop_token = self.linear_2(mel_x) # Sigmoid applied later
|
302 |
+
|
303 |
+
# Masking for training outputs
|
304 |
+
bool_mel_mask = tgt_key_padding_mask.unsqueeze(-1).repeat(1, 1, hp.mel_freq)
|
305 |
+
mel_linear = mel_linear.masked_fill(bool_mel_mask, 0.0)
|
306 |
+
mel_postnet = mel_postnet.masked_fill(bool_mel_mask, 0.0)
|
307 |
+
# Ensure stop_token is [N, TIME]
|
308 |
+
stop_token = stop_token.masked_fill(tgt_key_padding_mask.unsqueeze(-1) if stop_token.dim() == 3 else tgt_key_padding_mask, 1e3)
|
309 |
+
if stop_token.dim() == 3 and stop_token.shape[2] == 1:
|
310 |
+
stop_token = stop_token.squeeze(-1)
|
311 |
+
|
312 |
+
|
313 |
+
return mel_postnet, mel_linear, stop_token
|
314 |
+
|
315 |
+
|
316 |
+
@torch.no_grad()
|
317 |
+
def inference(self, text, max_length=800, stop_token_threshold=0.5): # text: [1, seq_len]
|
318 |
+
self.eval()
|
319 |
+
N = text.shape[0] # Should be 1
|
320 |
+
current_device = text.device
|
321 |
+
text_lengths = torch.tensor([text.shape[1]], device=current_device)
|
322 |
+
|
323 |
+
# Encoder pass (once)
|
324 |
+
src_key_padding_mask_inf = torch.zeros((N, text.shape[1]), device=current_device, dtype=torch.bool) # All False initially
|
325 |
+
# No, src_key_padding_mask should be based on actual text length, even if N=1, S=text.shape[1]
|
326 |
+
# For inference with single item, it's often all False (no padding in input text usually)
|
327 |
+
# However, to be consistent with how `mask_from_seq_lengths` works:
|
328 |
+
src_key_padding_mask_inf = ~mask_from_seq_lengths(text_lengths, text.shape[1])
|
329 |
+
|
330 |
+
|
331 |
+
encoder_output = self.encoder_prenet(text)
|
332 |
+
pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time, device=current_device))
|
333 |
+
text_s_dim = encoder_output.shape[1]
|
334 |
+
encoder_output = encoder_output + pos_codes[:text_s_dim]
|
335 |
+
|
336 |
+
encoder_output = self.encoder_block_1(encoder_output, key_padding_mask=src_key_padding_mask_inf)
|
337 |
+
encoder_output = self.encoder_block_2(encoder_output, key_padding_mask=src_key_padding_mask_inf)
|
338 |
+
encoder_output = self.encoder_block_3(encoder_output, key_padding_mask=src_key_padding_mask_inf)
|
339 |
+
memory = self.norm_memory(encoder_output)
|
340 |
+
|
341 |
+
# Decoder pass (iterative)
|
342 |
+
mel_input = torch.zeros((N, 1, hp.mel_freq), device=current_device) # SOS frame
|
343 |
+
generated_mel_frames = []
|
344 |
+
|
345 |
+
for i in range(max_length):
|
346 |
+
mel_lengths_inf = torch.tensor([mel_input.shape[1]], device=current_device)
|
347 |
+
# For decoder self-attention, causal mask is needed
|
348 |
+
tgt_mask_inf = torch.zeros((mel_input.shape[1], mel_input.shape[1]), device=current_device).masked_fill(
|
349 |
+
torch.triu(torch.full((mel_input.shape[1], mel_input.shape[1]), True, device=current_device, dtype=torch.bool), diagonal=1), float("-inf")
|
350 |
+
)
|
351 |
+
# Decoder input padding mask (all False as we build it frame by frame, no padding yet)
|
352 |
+
tgt_key_padding_mask_inf = torch.zeros((N, mel_input.shape[1]), device=current_device, dtype=torch.bool)
|
353 |
+
|
354 |
+
|
355 |
+
mel_x = self.decoder_prenet(mel_input)
|
356 |
+
mel_time_dim = mel_input.shape[1]
|
357 |
+
mel_x = mel_x + pos_codes[:mel_time_dim] # Positional encoding for current mel sequence
|
358 |
+
|
359 |
+
mel_x = self.decoder_block_1(x=mel_x, memory=memory, x_attn_mask=tgt_mask_inf, x_key_padding_mask=tgt_key_padding_mask_inf, memory_key_padding_mask=src_key_padding_mask_inf)
|
360 |
+
mel_x = self.decoder_block_2(x=mel_x, memory=memory, x_attn_mask=tgt_mask_inf, x_key_padding_mask=tgt_key_padding_mask_inf, memory_key_padding_mask=src_key_padding_mask_inf)
|
361 |
+
mel_x = self.decoder_block_3(x=mel_x, memory=memory, x_attn_mask=tgt_mask_inf, x_key_padding_mask=tgt_key_padding_mask_inf, memory_key_padding_mask=src_key_padding_mask_inf)
|
362 |
+
|
363 |
+
mel_linear_step = self.linear_1(mel_x[:, -1:, :]) # Predict only for the last frame
|
364 |
+
mel_postnet_residual_step = self.postnet(mel_linear_step)
|
365 |
+
current_mel_frame = mel_linear_step + mel_postnet_residual_step
|
366 |
+
|
367 |
+
generated_mel_frames.append(current_mel_frame)
|
368 |
+
mel_input = torch.cat([mel_input, current_mel_frame], dim=1) # Append to input for next step
|
369 |
+
|
370 |
+
# Stop token prediction (based on the last decoder output before linear to mel)
|
371 |
+
stop_token_logit = self.linear_2(mel_x[:, -1:, :]) # Stop token from last frame's decoder hidden state
|
372 |
+
stop_token_prob = torch.sigmoid(stop_token_logit.squeeze())
|
373 |
+
|
374 |
+
if stop_token_prob > stop_token_threshold:
|
375 |
+
# print(f"Stop token threshold reached at step {i+1}")
|
376 |
+
break
|
377 |
+
if mel_input.shape[1] > hp.max_mel_time -1: # Safety break based on max_mel_time
|
378 |
+
# print(f"Max mel time {hp.max_mel_time} almost reached.")
|
379 |
+
break
|
380 |
+
|
381 |
+
|
382 |
+
if not generated_mel_frames:
|
383 |
+
print("Warning: TTS inference produced no mel frames.")
|
384 |
+
return torch.zeros((N, 0, hp.mel_freq), device=current_device) # Return empty tensor
|
385 |
+
|
386 |
+
final_mel_output = torch.cat(generated_mel_frames, dim=1)
|
387 |
+
return final_mel_output # Removed stop_token_outputs as it's not used by caller
|
388 |
+
# --- (End of your model definitions) ---
|
389 |
+
|
390 |
+
# --- Part 2: Model Loading ---
|
391 |
+
# (Same as before - ensure TTS_MODEL = TransformerTTS(device=DEVICE).to(DEVICE) is used)
|
392 |
+
TTS_MODEL_HUB_ID = "MoHamdyy/transformer-tts-ljspeech"
|
393 |
+
ASR_HUB_ID = "MoHamdyy/whisper-stt-model"
|
394 |
+
MARIAN_HUB_ID = "MoHamdyy/marian-ar-en-translation"
|
395 |
+
|
396 |
+
TTS_MODEL = None
|
397 |
+
stt_processor = None
|
398 |
+
stt_model = None
|
399 |
+
mt_tokenizer = None
|
400 |
+
mt_model = None
|
401 |
+
|
402 |
+
# Wrap model loading in a function to clearly see when it happens or to potentially delay it.
|
403 |
+
# For Spaces, global loading is fine and preferred as it happens once.
|
404 |
+
print("--- Starting Model Loading ---")
|
405 |
+
try:
|
406 |
+
print(f"Loading TTS model ({TTS_MODEL_HUB_ID}) to {DEVICE}...")
|
407 |
+
tts_model_path = hf_hub_download(repo_id=TTS_MODEL_HUB_ID, filename="train_SimpleTransfromerTTS.pt")
|
408 |
+
state = torch.load(tts_model_path, map_location=DEVICE) # Load to target device directly
|
409 |
+
TTS_MODEL = TransformerTTS(device=DEVICE).to(DEVICE)
|
410 |
+
model_state_dict = state.get("model", state.get("state_dict", state))
|
411 |
+
TTS_MODEL.load_state_dict(model_state_dict)
|
412 |
+
TTS_MODEL.eval()
|
413 |
+
print("TTS model loaded successfully.")
|
414 |
+
except Exception as e:
|
415 |
+
print(f"Error loading TTS model: {e}")
|
416 |
+
|
417 |
+
try:
|
418 |
+
print(f"Loading STT (Whisper) model ({ASR_HUB_ID}) to {DEVICE}...")
|
419 |
+
stt_processor = WhisperProcessor.from_pretrained(ASR_HUB_ID)
|
420 |
+
stt_model = WhisperForConditionalGeneration.from_pretrained(ASR_HUB_ID).to(DEVICE).eval()
|
421 |
+
print("STT model loaded successfully.")
|
422 |
+
except Exception as e:
|
423 |
+
print(f"Error loading STT model: {e}")
|
424 |
+
|
425 |
+
try:
|
426 |
+
print(f"Loading TTT (MarianMT) model ({MARIAN_HUB_ID}) to {DEVICE}...")
|
427 |
+
mt_tokenizer = MarianTokenizer.from_pretrained(MARIAN_HUB_ID)
|
428 |
+
mt_model = MarianMTModel.from_pretrained(MARIAN_HUB_ID).to(DEVICE).eval()
|
429 |
+
print("TTT model loaded successfully.")
|
430 |
+
except Exception as e:
|
431 |
+
print(f"Error loading TTT model: {e}")
|
432 |
+
print("--- Model Loading Complete ---")
|
433 |
+
|
434 |
+
|
435 |
+
# --- Part 3: Full Pipeline Function for Gradio ---
|
436 |
+
@spaces.GPU # <<< --- APPLY THE DECORATOR HERE --- <<<
|
437 |
+
def full_speech_translation_pipeline_gradio(audio_input_path):
|
438 |
+
# This print will show the device context *inside* the decorated function
|
439 |
+
# For ZeroGPU, this should ideally show 'cuda:X' when the function is executed
|
440 |
+
current_processing_device = next(stt_model.parameters()).device if stt_model else "CPU (STT model not loaded)"
|
441 |
+
print(f"--- @spaces.GPU function: Pipeline running on device: {current_processing_device} ---")
|
442 |
+
|
443 |
+
|
444 |
+
if not all([TTS_MODEL, stt_processor, stt_model, mt_tokenizer, mt_model]):
|
445 |
+
error_msg = "Critical Error: One or more models failed to load during Space initialization. Cannot process."
|
446 |
+
print(error_msg)
|
447 |
+
# Raising gr.Error is better for UI feedback
|
448 |
+
raise gr.Error(error_msg)
|
449 |
+
|
450 |
+
|
451 |
+
if audio_input_path is None:
|
452 |
+
# This case should ideally be handled by Gradio's input validation or a check before calling.
|
453 |
+
# If it still occurs, provide a clear message.
|
454 |
+
raise gr.Error("No audio file provided. Please upload an audio file.")
|
455 |
+
|
456 |
+
print(f"--- GRADIO PIPELINE START (GPU context): Processing {audio_input_path} ---")
|
457 |
+
|
458 |
+
# STT Stage
|
459 |
+
arabic_transcript = "STT Error: Processing failed."
|
460 |
+
try:
|
461 |
+
print("STT: Loading and resampling audio...")
|
462 |
+
wav, sr = torchaudio.load(audio_input_path)
|
463 |
+
if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True)
|
464 |
+
target_sr_stt = stt_processor.feature_extractor.sampling_rate
|
465 |
+
if sr != target_sr_stt: wav = torchaudio.transforms.Resample(sr, target_sr_stt)(wav)
|
466 |
+
# Move wav to the STT model's device *before* converting to numpy if STT model is on GPU
|
467 |
+
audio_array_stt = wav.to(DEVICE).squeeze().cpu().numpy() # Process on DEVICE, then to CPU for numpy
|
468 |
+
|
469 |
+
print("STT: Extracting features and transcribing...")
|
470 |
+
# Ensure inputs are on the same device as the model
|
471 |
+
inputs_stt = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
|
472 |
+
forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
|
473 |
+
with torch.no_grad():
|
474 |
+
generated_ids = stt_model.generate(inputs_stt, forced_decoder_ids=forced_ids, max_new_tokens=256)
|
475 |
+
arabic_transcript = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
476 |
+
print(f"STT Output: {arabic_transcript}")
|
477 |
+
except Exception as e:
|
478 |
+
print(f"STT Error: {e}")
|
479 |
+
raise gr.Error(f"STT processing failed: {e}")
|
480 |
+
|
481 |
+
|
482 |
+
# TTT Stage
|
483 |
+
english_translation = "TTT Error: Processing failed."
|
484 |
+
if arabic_transcript and not arabic_transcript.startswith("STT Error"):
|
485 |
+
try:
|
486 |
+
print("TTT: Translating to English...")
|
487 |
+
batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True, truncation=True).to(DEVICE)
|
488 |
+
with torch.no_grad():
|
489 |
+
translated_ids = mt_model.generate(**batch, max_length=512) # max_new_tokens can also be used
|
490 |
+
english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
|
491 |
+
print(f"TTT Output: {english_translation}")
|
492 |
+
except Exception as e:
|
493 |
+
print(f"TTT Error: {e}")
|
494 |
+
raise gr.Error(f"TTT processing failed: {e}")
|
495 |
+
|
496 |
+
else:
|
497 |
+
if not arabic_transcript or arabic_transcript.startswith("STT Error"):
|
498 |
+
english_translation = "(Skipped TTT due to STT failure or empty STT output)"
|
499 |
+
print(english_translation)
|
500 |
+
|
501 |
+
|
502 |
+
# TTS Stage
|
503 |
+
output_tts_audio_filepath = None
|
504 |
+
if english_translation and not english_translation.startswith("TTT Error") and TTS_MODEL:
|
505 |
+
try:
|
506 |
+
print("TTS: Synthesizing English speech...")
|
507 |
+
if not english_translation.strip():
|
508 |
+
print("TTS Warning: Empty string for synthesis. Skipping TTS.")
|
509 |
+
else:
|
510 |
+
sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
|
511 |
+
# max_length for TTS inference refers to max output mel frames
|
512 |
+
generated_mel = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time - 50, stop_token_threshold=0.5)
|
513 |
+
|
514 |
+
print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
|
515 |
+
if generated_mel is not None and generated_mel.numel() > 0 and generated_mel.shape[1] > 0 :
|
516 |
+
# TTS model's inverse_mel_spec_to_wav expects mel on DEVICE and returns wav on CPU
|
517 |
+
# The mel from inference should be [N, mel_len, mel_bins]
|
518 |
+
# inverse_mel_spec_to_wav might expect [mel_bins, mel_len]
|
519 |
+
mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1) # to [mel_len, mel_bins]
|
520 |
+
audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder) # This function handles .to(DEVICE) internally
|
521 |
+
synthesized_audio_np = audio_tensor.cpu().numpy() # Ensure output is on CPU for soundfile
|
522 |
+
print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
|
523 |
+
|
524 |
+
timestamp = int(time.time()*1000) # more unique
|
525 |
+
output_tts_audio_filepath = f"output_audio_{timestamp}.wav"
|
526 |
+
sf.write(output_tts_audio_filepath, synthesized_audio_np, hp.sr)
|
527 |
+
print(f"TTS: Synthesized audio saved to: {output_tts_audio_filepath}")
|
528 |
+
else:
|
529 |
+
print("TTS Warning: Generated mel spectrogram was empty or invalid.")
|
530 |
+
except Exception as e:
|
531 |
+
print(f"TTS Error: {e}")
|
532 |
+
# Do not raise gr.Error here if a partial result (text) is still useful
|
533 |
+
# output_tts_audio_filepath will remain None
|
534 |
+
english_translation += f" (TTS Error: {e})" # Append error to text
|
535 |
+
else:
|
536 |
+
if not TTS_MODEL: print("TTS SKIPPED: Model not loaded.")
|
537 |
+
elif not (english_translation and not english_translation.startswith("TTT Error")):
|
538 |
+
print("TTS SKIPPED: (Due to TTT failure or empty TTT output)")
|
539 |
+
|
540 |
+
|
541 |
+
print(f"--- GRADIO PIPELINE END (GPU context) ---")
|
542 |
+
return arabic_transcript, english_translation, output_tts_audio_filepath
|
543 |
+
|
544 |
+
|
545 |
+
# --- Part 4: Gradio Interface Definition ---
|
546 |
+
# (Same as before)
|
547 |
+
iface = gr.Interface(
|
548 |
+
fn=full_speech_translation_pipeline_gradio,
|
549 |
+
inputs=[
|
550 |
+
gr.Audio(type="filepath", label="Upload Arabic Speech")
|
551 |
+
],
|
552 |
+
outputs=[
|
553 |
+
gr.Textbox(label="Arabic Transcript (STT)"),
|
554 |
+
gr.Textbox(label="English Translation (TTT)"),
|
555 |
+
gr.Audio(label="Synthesized English Speech (TTS)", type="filepath")
|
556 |
+
],
|
557 |
+
title="Arabic to English Speech Translation (ZeroGPU)",
|
558 |
+
description="Upload an Arabic audio file. Transcribed to Arabic (Whisper), translated to English (MarianMT), synthesized to English speech (Custom TransformerTTS).",
|
559 |
+
allow_flagging="never",
|
560 |
+
# examples=[["sample.wav"]] # If you add a sample.wav to your repo
|
561 |
+
)
|
562 |
+
|
563 |
+
# --- Part 5: Launch for Spaces (and local testing) ---
|
564 |
+
if __name__ == '__main__':
|
565 |
+
# Clean up temp audio files from previous local runs
|
566 |
+
for f_name in os.listdir("."):
|
567 |
+
if f_name.startswith("output_audio_") and f_name.endswith(".wav"):
|
568 |
+
try:
|
569 |
+
os.remove(f_name)
|
570 |
+
except OSError:
|
571 |
+
pass # Ignore if file is already gone or locked
|
572 |
+
print("Starting Gradio interface locally with debug mode...")
|
573 |
+
iface.launch(debug=True, share=False) # share=False for local, Spaces handles public URL
|
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Machine Learning & Audio
|
2 |
+
torch
|
3 |
+
torchaudio
|
4 |
+
# For CPU, ensure correct PyTorch version if not using ZeroGPU:
|
5 |
+
# torch --index-url https://download.pytorch.org/whl/cpu
|
6 |
+
# For CUDA (ZeroGPU is CUDA-based, HF Spaces will handle this if ZeroGPU is selected)
|
7 |
+
# torch --index-url https://download.pytorch.org/whl/cu118
|
8 |
+
# (Check latest recommended CUDA version for ZeroGPU on HF docs)
|
9 |
+
|
10 |
+
transformers
|
11 |
+
librosa
|
12 |
+
soundfile
|
13 |
+
pydub
|
14 |
+
unidecode
|
15 |
+
inflect
|
16 |
+
huggingface_hub
|
17 |
+
sentencepiece # Often needed by tokenizers
|
18 |
+
|
19 |
+
# Gradio
|
20 |
+
gradio >=4.0.0 # Use a recent version of Gradio
|
21 |
+
|
22 |
+
# Other utilities
|
23 |
+
numpy
|
24 |
+
pandas # Though pandas is not explicitly used in the pipeline, it's in your imports
|