Spaces:
Sleeping
Sleeping
changed app to gradio
Browse files
app.py
CHANGED
@@ -3,26 +3,26 @@ import re
|
|
3 |
import time
|
4 |
import random
|
5 |
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import math
|
8 |
-
|
9 |
-
|
10 |
|
11 |
# Torch and Audio
|
12 |
import torch
|
13 |
import torch.nn as nn
|
14 |
-
|
15 |
-
|
16 |
import torch.nn.functional as F
|
17 |
import torchaudio
|
18 |
-
|
19 |
-
|
20 |
|
21 |
# Text and Audio Processing
|
22 |
from unidecode import unidecode
|
23 |
-
from inflect import engine
|
24 |
-
|
25 |
-
|
26 |
|
27 |
# Transformers
|
28 |
from transformers import (
|
@@ -30,27 +30,22 @@ from transformers import (
|
|
30 |
MarianTokenizer, MarianMTModel,
|
31 |
)
|
32 |
|
33 |
-
#
|
34 |
-
import
|
35 |
-
from
|
|
|
|
|
36 |
|
37 |
-
# --- Configuration & Device ---
|
38 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
-
print(f"Using device: {DEVICE}")
|
40 |
|
41 |
-
|
42 |
-
np.random.seed(42)
|
43 |
-
random.seed(42)
|
44 |
-
if torch.cuda.is_available():
|
45 |
-
torch.cuda.manual_seed_all(42)
|
46 |
-
torch.backends.cudnn.deterministic = True
|
47 |
-
torch.backends.cudnn.benchmark = False
|
48 |
|
49 |
-
|
|
|
50 |
class Hyperparams:
|
51 |
seed = 42
|
52 |
-
|
53 |
-
|
|
|
54 |
symbols = [
|
55 |
'EOS', ' ', '!', ',', '-', '.', ';', '?', 'a', 'b', 'c', 'd', 'e', 'f',
|
56 |
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
|
@@ -64,7 +59,7 @@ class Hyperparams:
|
|
64 |
win_length = int(n_fft/2.0)
|
65 |
mel_freq = 128
|
66 |
max_mel_time = 1024
|
67 |
-
power = 2.0
|
68 |
text_num_embeddings = 2*len(symbols)
|
69 |
embedding_size = 256
|
70 |
encoder_embedding_size = 512
|
@@ -72,16 +67,17 @@ class Hyperparams:
|
|
72 |
postnet_embedding_size = 1024
|
73 |
encoder_kernel_size = 3
|
74 |
postnet_kernel_size = 5
|
75 |
-
ampl_multiplier = 10.0
|
76 |
-
ampl_amin = 1e-10
|
77 |
-
db_multiplier = 1.0
|
78 |
-
ampl_ref = 1.0
|
79 |
-
ampl_power = 1.0
|
80 |
-
max_db = 100
|
81 |
-
scale_db = 10
|
|
|
82 |
hp = Hyperparams()
|
83 |
|
84 |
-
#
|
85 |
symbol_to_id = {s: i for i, s in enumerate(hp.symbols)}
|
86 |
def text_to_seq(text):
|
87 |
text = text.lower()
|
@@ -93,19 +89,27 @@ def text_to_seq(text):
|
|
93 |
seq.append(symbol_to_id["EOS"])
|
94 |
return torch.IntTensor(seq)
|
95 |
|
|
|
|
|
|
|
|
|
96 |
mel_inverse_transform = torchaudio.transforms.InverseMelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft).to(DEVICE)
|
97 |
-
griffnlim_transform = torchaudio.transforms.GriffinLim(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def db_to_power_mel_spec(mel_spec):
|
100 |
-
|
101 |
-
|
102 |
-
return
|
103 |
-
|
104 |
-
def inverse_mel_spec_to_wav(mel_spec):
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
pseudo_wav = griffnlim_transform(spectrogram) # Linear amplitude to wav
|
109 |
return pseudo_wav
|
110 |
|
111 |
def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.BoolTensor:
|
@@ -113,266 +117,287 @@ def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> to
|
|
113 |
range_tensor = ones.cumsum(dim=1)
|
114 |
return sequence_lengths.unsqueeze(1) >= range_tensor
|
115 |
|
116 |
-
# --- TransformerTTS Model Architecture (
|
117 |
-
class EncoderBlock(nn.Module):
|
118 |
def __init__(self):
|
119 |
super(EncoderBlock, self).__init__()
|
120 |
-
self.norm_1 = nn.LayerNorm(hp.embedding_size)
|
121 |
-
self.attn = torch.nn.MultiheadAttention(hp.embedding_size, 4, dropout=0.1, batch_first=True)
|
122 |
self.dropout_1 = torch.nn.Dropout(0.1)
|
123 |
-
self.norm_2 = nn.LayerNorm(hp.embedding_size)
|
124 |
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
|
125 |
self.dropout_2 = torch.nn.Dropout(0.1)
|
126 |
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
|
127 |
self.dropout_3 = torch.nn.Dropout(0.1)
|
128 |
def forward(self, x, attn_mask=None, key_padding_mask=None):
|
129 |
-
x_out = self.norm_1(x)
|
130 |
-
x_out = self.
|
131 |
-
x_out = self.
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def __init__(self):
|
137 |
super(DecoderBlock, self).__init__()
|
138 |
-
self.norm_1 = nn.LayerNorm(hp.embedding_size)
|
139 |
-
self.self_attn = torch.nn.MultiheadAttention(hp.embedding_size, 4, dropout=0.1, batch_first=True)
|
140 |
self.dropout_1 = torch.nn.Dropout(0.1)
|
141 |
-
self.norm_2 = nn.LayerNorm(hp.embedding_size)
|
142 |
-
self.attn = torch.nn.MultiheadAttention(hp.embedding_size, 4, dropout=0.1, batch_first=True)
|
143 |
self.dropout_2 = torch.nn.Dropout(0.1)
|
144 |
-
self.norm_3 = nn.LayerNorm(hp.embedding_size)
|
145 |
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
|
146 |
self.dropout_3 = torch.nn.Dropout(0.1)
|
147 |
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
|
148 |
self.dropout_4 = torch.nn.Dropout(0.1)
|
149 |
def forward(self, x, memory, x_attn_mask=None, x_key_padding_mask=None, memory_attn_mask=None, memory_key_padding_mask=None):
|
150 |
-
x_out, _ = self.self_attn(x, x, x, attn_mask=x_attn_mask, key_padding_mask=x_key_padding_mask)
|
151 |
-
x_out = self.dropout_1(x_out)
|
152 |
-
|
153 |
-
x_out = self.
|
154 |
-
x_out = self.
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
def __init__(self):
|
160 |
super(EncoderPreNet, self).__init__()
|
161 |
-
self.embedding = nn.Embedding(hp.text_num_embeddings, hp.encoder_embedding_size)
|
162 |
self.linear_1 = nn.Linear(hp.encoder_embedding_size, hp.encoder_embedding_size)
|
163 |
self.linear_2 = nn.Linear(hp.encoder_embedding_size, hp.embedding_size)
|
164 |
-
self.conv_1 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, hp.encoder_kernel_size, 1, int((hp.encoder_kernel_size-1)/2),1)
|
165 |
-
self.bn_1 = nn.BatchNorm1d(hp.encoder_embedding_size)
|
166 |
-
self.
|
167 |
-
self.
|
168 |
-
self.
|
169 |
-
self.
|
|
|
|
|
|
|
170 |
def forward(self, text):
|
171 |
-
x = self.embedding(text)
|
172 |
-
x = self.
|
173 |
-
x =
|
174 |
-
x = self.
|
175 |
-
x =
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
def __init__(self):
|
179 |
super(PostNet, self).__init__()
|
180 |
-
self.conv_1 = nn.Conv1d(hp.mel_freq, hp.postnet_embedding_size, hp.postnet_kernel_size, 1, int((hp.postnet_kernel_size-1)/2),1)
|
181 |
-
self.bn_1 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
182 |
-
self.
|
183 |
-
self.
|
184 |
-
self.
|
185 |
-
self.
|
186 |
-
self.
|
187 |
-
self.
|
188 |
-
self.
|
189 |
-
self.
|
190 |
-
self.
|
191 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
def forward(self, x):
|
193 |
-
|
194 |
-
x = self.conv_1(x)
|
195 |
-
x = self.
|
196 |
-
x = self.
|
197 |
-
x = self.
|
198 |
-
x = self.
|
199 |
-
x = self.
|
200 |
-
x =
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
def __init__(self):
|
204 |
super(DecoderPreNet, self).__init__()
|
205 |
self.linear_1 = nn.Linear(hp.mel_freq, hp.embedding_size)
|
206 |
self.linear_2 = nn.Linear(hp.embedding_size, hp.embedding_size)
|
207 |
def forward(self, x):
|
208 |
-
x = self.linear_1(x)
|
209 |
-
x = F.
|
210 |
-
x =
|
211 |
-
x =
|
|
|
|
|
212 |
return x
|
213 |
|
214 |
-
class TransformerTTS(nn.Module):
|
215 |
-
def __init__(self
|
216 |
super(TransformerTTS, self).__init__()
|
217 |
self.encoder_prenet = EncoderPreNet()
|
218 |
self.decoder_prenet = DecoderPreNet()
|
219 |
self.postnet = PostNet()
|
220 |
-
self.pos_encoding = nn.Embedding(hp.max_mel_time, hp.embedding_size)
|
221 |
-
self.encoder_block_1 = EncoderBlock()
|
222 |
-
self.
|
|
|
|
|
|
|
|
|
223 |
self.linear_1 = nn.Linear(hp.embedding_size, hp.mel_freq)
|
224 |
self.linear_2 = nn.Linear(hp.embedding_size, 1)
|
225 |
-
self.norm_memory = nn.LayerNorm(hp.embedding_size)
|
226 |
-
|
227 |
-
|
228 |
-
self.
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
self.src_key_padding_mask = torch.zeros((N, S_text_in), device=current_device).masked_fill(~mask_from_seq_lengths(text_len, max_length=S_text_in), float("-inf"))
|
235 |
-
self.src_mask = torch.zeros((S_text_in, S_text_in), device=current_device).masked_fill(torch.triu(torch.full((S_text_in, S_text_in), True, dtype=torch.bool, device=current_device), diagonal=1), float("-inf"))
|
236 |
-
self.tgt_key_padding_mask = torch.zeros((N, TIME_mel_in), device=current_device).masked_fill(~mask_from_seq_lengths(mel_len, max_length=TIME_mel_in), float("-inf"))
|
237 |
-
self.tgt_mask = torch.zeros((TIME_mel_in, TIME_mel_in), device=current_device).masked_fill(torch.triu(torch.full((TIME_mel_in, TIME_mel_in), True, device=current_device, dtype=torch.bool), diagonal=1), float("-inf"))
|
238 |
-
self.memory_mask = torch.zeros((TIME_mel_in, S_text_in), device=current_device).masked_fill(torch.triu(torch.full((TIME_mel_in, S_text_in), True, device=current_device, dtype=torch.bool), diagonal=1), float("-inf"))
|
239 |
-
|
240 |
text_x = self.encoder_prenet(text)
|
241 |
-
pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time
|
242 |
-
|
243 |
-
|
244 |
text_x = self.encoder_block_1(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
|
245 |
text_x = self.encoder_block_2(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
|
246 |
text_x = self.encoder_block_3(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
|
247 |
text_x = self.norm_memory(text_x)
|
248 |
-
|
249 |
-
mel_x = self.decoder_prenet(mel);
|
250 |
-
TIME_mel_processed = mel_x.shape[1]; mel_x = mel_x + pos_codes[:TIME_mel_processed] # Use actual T after prenet
|
251 |
-
|
252 |
mel_x = self.decoder_block_1(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
|
253 |
mel_x = self.decoder_block_2(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
|
254 |
mel_x = self.decoder_block_3(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
|
255 |
-
|
256 |
mel_linear = self.linear_1(mel_x)
|
257 |
-
|
258 |
-
mel_postnet = mel_linear +
|
259 |
-
stop_token = self.linear_2(mel_x)
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
bool_mel_padding_mask = self.tgt_key_padding_mask.ne(0)
|
265 |
-
|
266 |
-
mel_linear = mel_linear.masked_fill(bool_mel_padding_mask.unsqueeze(-1).expand_as(mel_linear), 0)
|
267 |
-
mel_postnet = mel_postnet.masked_fill(bool_mel_padding_mask.unsqueeze(-1).expand_as(mel_postnet), 0)
|
268 |
-
stop_token = stop_token.masked_fill(bool_mel_padding_mask.unsqueeze(-1).expand_as(stop_token), 1e3).squeeze(2)
|
269 |
return mel_postnet, mel_linear, stop_token
|
270 |
|
271 |
-
@torch.no_grad()
|
272 |
-
def inference(self, text, max_length=800, stop_token_threshold=0.5, with_tqdm=
|
273 |
-
self.eval(); self.train(False)
|
274 |
-
|
275 |
-
|
276 |
-
text_on_device = text.to(model_device)
|
277 |
-
text_lengths = torch.tensor([text_on_device.shape[1]],dtype=torch.long).unsqueeze(0).to(model_device) # Ensure text_lengths is also 2D [1,1] or [1]
|
278 |
-
|
279 |
N = 1
|
280 |
-
SOS = torch.zeros((N, 1, hp.mel_freq), device=
|
281 |
mel_padded = SOS
|
282 |
-
mel_lengths = torch.tensor(
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
# Use local tqdm to avoid conflict if tqdm is imported elsewhere
|
287 |
-
from tqdm import tqdm as tqdm_local
|
288 |
-
iters = tqdm_local(range(max_length), desc="TTS Inference") if with_tqdm else range(max_length)
|
289 |
-
|
290 |
-
final_mel_postnet_output = SOS # To store the output from the last forward pass
|
291 |
-
|
292 |
for _ in iters:
|
293 |
-
|
294 |
-
mel_postnet, mel_linear, stop_token = self(text_on_device, text_lengths, mel_padded, mel_lengths)
|
295 |
-
final_mel_postnet_output = mel_postnet # This is the full sequence predicted in this step
|
296 |
-
|
297 |
-
# Append last frame of mel_postnet for next input step
|
298 |
mel_padded = torch.cat([mel_padded, mel_postnet[:, -1:, :]], dim=1)
|
299 |
-
|
300 |
-
|
301 |
-
# stop_token is (N, T_current_input_len)
|
302 |
-
# Check stop condition for the last frame of the input sequence
|
303 |
-
if (torch.sigmoid(stop_token[:, -1].squeeze()) > stop_token_threshold).item():
|
304 |
break
|
305 |
else:
|
306 |
-
# stop_token[:, -1:] is (N, 1)
|
307 |
stop_token_outputs = torch.cat([stop_token_outputs, stop_token[:, -1:]], dim=1)
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
if final_mel_postnet_output.shape[1] > 1: # If more than just SOS frame
|
311 |
-
mel_to_return = final_mel_postnet_output[:, 1:, :]
|
312 |
-
else: # Only SOS was processed, or nothing
|
313 |
-
mel_to_return = torch.empty((N, 0, hp.mel_freq), device=model_device)
|
314 |
-
if mel_to_return.shape[1] == 0: # ensure stop_token_outputs is also empty
|
315 |
-
stop_token_outputs = torch.empty_like(stop_token_outputs[:,:0])
|
316 |
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
#
|
|
|
|
|
|
|
|
|
|
|
321 |
TTS_MODEL_HUB_ID = "MoHamdyy/transformer-tts-ljspeech"
|
322 |
ASR_HUB_ID = "MoHamdyy/whisper-stt-model"
|
323 |
MARIAN_HUB_ID = "MoHamdyy/marian-ar-en-translation"
|
324 |
|
|
|
|
|
|
|
|
|
325 |
print("Loading models from Hugging Face Hub to device:", DEVICE)
|
326 |
-
TTS_MODEL = None; stt_processor = None; stt_model = None; mt_tokenizer = None; mt_model = None
|
327 |
|
|
|
328 |
try:
|
329 |
print("Loading TTS model...")
|
|
|
330 |
tts_model_path = hf_hub_download(repo_id=TTS_MODEL_HUB_ID, filename="train_SimpleTransfromerTTS.pt")
|
331 |
state = torch.load(tts_model_path, map_location=DEVICE)
|
332 |
-
TTS_MODEL = TransformerTTS().to(DEVICE)
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
336 |
TTS_MODEL.eval()
|
337 |
print("TTS model loaded successfully.")
|
338 |
-
except Exception as e:
|
|
|
|
|
339 |
|
|
|
340 |
try:
|
341 |
print("Loading STT (Whisper) model...")
|
342 |
stt_processor = WhisperProcessor.from_pretrained(ASR_HUB_ID)
|
343 |
stt_model = WhisperForConditionalGeneration.from_pretrained(ASR_HUB_ID).to(DEVICE).eval()
|
344 |
print("STT model loaded successfully.")
|
345 |
-
except Exception as e:
|
|
|
|
|
|
|
346 |
|
|
|
347 |
try:
|
348 |
print("Loading TTT (MarianMT) model...")
|
349 |
mt_tokenizer = MarianTokenizer.from_pretrained(MARIAN_HUB_ID)
|
350 |
mt_model = MarianMTModel.from_pretrained(MARIAN_HUB_ID).to(DEVICE).eval()
|
351 |
print("TTT model loaded successfully.")
|
352 |
-
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
-
#
|
355 |
-
|
|
|
|
|
356 |
print(f"--- PIPELINE START: Processing {audio_input_path} ---")
|
357 |
-
|
358 |
-
|
359 |
-
error_msg = "One or more models failed to load. Please check logs."
|
360 |
-
print(error_msg)
|
361 |
-
return error_msg, error_msg, (hp.sr, np.array([]).astype(np.float32))
|
362 |
-
|
363 |
-
if audio_input_path is None: # Gradio provides a path for uploaded/recorded audio
|
364 |
-
msg = "Error: No audio input received by Gradio."
|
365 |
-
print(msg)
|
366 |
-
return msg, "", (hp.sr, np.array([]).astype(np.float32))
|
367 |
-
|
368 |
-
if not os.path.exists(audio_input_path):
|
369 |
-
# This case might happen if Gradio passes a temp path that gets cleaned up too quickly,
|
370 |
-
# or if there's an issue with how Gradio handles file paths.
|
371 |
-
# For Gradio `type="filepath"`, the path should be valid.
|
372 |
-
msg = f"Error: Audio file path provided by Gradio does not exist: {audio_input_path}"
|
373 |
print(msg)
|
374 |
-
|
375 |
-
|
376 |
|
377 |
# STT Stage
|
378 |
arabic_transcript = "STT Error: Processing failed."
|
@@ -391,16 +416,12 @@ def full_speech_translation_pipeline_gradio(audio_input_path: str): # Renamed fo
|
|
391 |
generated_ids = stt_model.generate(inputs, forced_decoder_ids=forced_ids, max_length=448)
|
392 |
arabic_transcript = stt_processor.decode(generated_ids[0], skip_special_tokens=True).strip()
|
393 |
print(f"STT Output: {arabic_transcript}")
|
394 |
-
if not arabic_transcript: arabic_transcript = "(STT: No speech detected or empty transcript)"
|
395 |
except Exception as e:
|
396 |
-
print(f"STT Error: {e}")
|
397 |
-
arabic_transcript = f"STT Error: {e}"
|
398 |
-
|
399 |
|
400 |
# TTT Stage
|
401 |
english_translation = "TTT Error: Processing failed."
|
402 |
-
|
403 |
-
if arabic_transcript and not arabic_transcript.startswith("STT Error") and not arabic_transcript.startswith("(STT:"):
|
404 |
try:
|
405 |
print("TTT: Translating to English...")
|
406 |
batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True).to(DEVICE)
|
@@ -408,74 +429,72 @@ def full_speech_translation_pipeline_gradio(audio_input_path: str): # Renamed fo
|
|
408 |
translated_ids = mt_model.generate(**batch, max_length=512)
|
409 |
english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
|
410 |
print(f"TTT Output: {english_translation}")
|
411 |
-
if not english_translation: english_translation = "(TTT: Empty translation)"
|
412 |
except Exception as e:
|
413 |
-
print(f"TTT Error: {e}")
|
414 |
-
|
415 |
-
|
416 |
-
english_translation = "(Skipped TTT due to STT issue)"
|
417 |
print(english_translation)
|
418 |
-
else: # Should not happen if STT produces some output
|
419 |
-
english_translation = "(Skipped TTT: Unknown STT state)"
|
420 |
-
|
421 |
|
422 |
# TTS Stage
|
423 |
synthesized_audio_np = np.array([]).astype(np.float32)
|
424 |
-
if english_translation and not english_translation.startswith("TTT Error")
|
425 |
try:
|
426 |
print("TTS: Synthesizing English speech...")
|
427 |
-
sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
|
428 |
-
|
429 |
-
# Make sure TTS_MODEL is on the correct device before inference
|
430 |
-
TTS_MODEL.to(DEVICE) # Redundant if already done, but safe
|
431 |
-
TTS_MODEL.eval() # Ensure eval mode
|
432 |
-
|
433 |
generated_mel, _ = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time-20, stop_token_threshold=0.5, with_tqdm=False)
|
434 |
|
435 |
print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
|
436 |
-
if generated_mel is not None and generated_mel.numel() > 0
|
437 |
-
mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1)
|
438 |
audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder)
|
439 |
synthesized_audio_np = audio_tensor.cpu().numpy()
|
440 |
print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
|
441 |
-
else:
|
442 |
-
tts_status_message = "(TTS Error: Empty mel generated)"
|
443 |
-
print(tts_status_message)
|
444 |
except Exception as e:
|
445 |
-
print(f"TTS Error: {e}")
|
446 |
-
|
447 |
-
elif english_translation.startswith("TTT Error") or english_translation.startswith("(Skipped") or english_translation.startswith("(TTT:"):
|
448 |
-
tts_status_message = "(Skipped TTS due to TTT/Input issue)"
|
449 |
-
else: # Should not happen if TTT produces some output
|
450 |
-
tts_status_message = "(Skipped TTS: Unknown TTT state)"
|
451 |
-
|
452 |
print(f"--- PIPELINE END ---")
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
#
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
gr.Textbox(label="English Translation & TTS Status"),
|
468 |
-
gr.Audio(label="Synthesized English Speech (TTS)", type="numpy") # type="numpy" expects (sr, data)
|
469 |
-
],
|
470 |
-
title="Arabic Speech-to-Text -> Translation -> English Text-to-Speech",
|
471 |
-
description="Upload an Arabic audio file or record from your microphone. The system will transcribe it to Arabic, translate it to English, and then synthesize the English text into audible speech.",
|
472 |
-
allow_flagging="never",
|
473 |
-
examples=[["/kaggle/input/testtt/test_audio.ogg"]] if os.path.exists("/kaggle/input/testtt/test_audio.ogg") else None # Optional example
|
474 |
)
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
#
|
479 |
-
|
480 |
-
|
481 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import time
|
4 |
import random
|
5 |
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import math
|
8 |
+
import shutil
|
9 |
+
import base64
|
10 |
|
11 |
# Torch and Audio
|
12 |
import torch
|
13 |
import torch.nn as nn
|
14 |
+
import torch.optim as optim
|
15 |
+
from torch.utils.data import Dataset, DataLoader
|
16 |
import torch.nn.functional as F
|
17 |
import torchaudio
|
18 |
+
import librosa
|
19 |
+
import librosa.display
|
20 |
|
21 |
# Text and Audio Processing
|
22 |
from unidecode import unidecode
|
23 |
+
from inflect import engine
|
24 |
+
import pydub
|
25 |
+
import soundfile as sf
|
26 |
|
27 |
# Transformers
|
28 |
from transformers import (
|
|
|
30 |
MarianTokenizer, MarianMTModel,
|
31 |
)
|
32 |
|
33 |
+
# API Server
|
34 |
+
from fastapi import FastAPI, UploadFile, File
|
35 |
+
from fastapi.middleware.cors import CORSMiddleware
|
36 |
+
from fastapi.staticfiles import StaticFiles # <--- ADD THIS IMPORT
|
37 |
+
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
+
# Part 2: TTS Model Components (from your notebook)
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
|
43 |
+
# Hyperparameters
|
44 |
class Hyperparams:
|
45 |
seed = 42
|
46 |
+
# We won't use these dataset paths, but keep them for hp object integrity
|
47 |
+
csv_path = "path/to/metadata.csv"
|
48 |
+
wav_path = "path/to/wavs"
|
49 |
symbols = [
|
50 |
'EOS', ' ', '!', ',', '-', '.', ';', '?', 'a', 'b', 'c', 'd', 'e', 'f',
|
51 |
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
|
|
|
59 |
win_length = int(n_fft/2.0)
|
60 |
mel_freq = 128
|
61 |
max_mel_time = 1024
|
62 |
+
power = 2.0
|
63 |
text_num_embeddings = 2*len(symbols)
|
64 |
embedding_size = 256
|
65 |
encoder_embedding_size = 512
|
|
|
67 |
postnet_embedding_size = 1024
|
68 |
encoder_kernel_size = 3
|
69 |
postnet_kernel_size = 5
|
70 |
+
ampl_multiplier = 10.0
|
71 |
+
ampl_amin = 1e-10
|
72 |
+
db_multiplier = 1.0
|
73 |
+
ampl_ref = 1.0
|
74 |
+
ampl_power = 1.0
|
75 |
+
max_db = 100
|
76 |
+
scale_db = 10
|
77 |
+
|
78 |
hp = Hyperparams()
|
79 |
|
80 |
+
# Text to Sequence
|
81 |
symbol_to_id = {s: i for i, s in enumerate(hp.symbols)}
|
82 |
def text_to_seq(text):
|
83 |
text = text.lower()
|
|
|
89 |
seq.append(symbol_to_id["EOS"])
|
90 |
return torch.IntTensor(seq)
|
91 |
|
92 |
+
# Audio Processing
|
93 |
+
spec_transform = torchaudio.transforms.Spectrogram(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length, power=hp.power)
|
94 |
+
mel_scale_transform = torchaudio.transforms.MelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft)
|
95 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
96 |
mel_inverse_transform = torchaudio.transforms.InverseMelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft).to(DEVICE)
|
97 |
+
griffnlim_transform = torchaudio.transforms.GriffinLim(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length).to(DEVICE)
|
98 |
+
|
99 |
+
def pow_to_db_mel_spec(mel_spec):
|
100 |
+
mel_spec = torchaudio.functional.amplitude_to_DB(mel_spec, multiplier=hp.ampl_multiplier, amin=hp.ampl_amin, db_multiplier=hp.db_multiplier, top_db=hp.max_db)
|
101 |
+
mel_spec = mel_spec/hp.scale_db
|
102 |
+
return mel_spec
|
103 |
|
104 |
def db_to_power_mel_spec(mel_spec):
|
105 |
+
mel_spec = mel_spec*hp.scale_db
|
106 |
+
mel_spec = torchaudio.functional.DB_to_amplitude(mel_spec, ref=hp.ampl_ref, power=hp.ampl_power)
|
107 |
+
return mel_spec
|
108 |
+
|
109 |
+
def inverse_mel_spec_to_wav(mel_spec):
|
110 |
+
power_mel_spec = db_to_power_mel_spec(mel_spec.to(DEVICE))
|
111 |
+
spectrogram = mel_inverse_transform(power_mel_spec)
|
112 |
+
pseudo_wav = griffnlim_transform(spectrogram)
|
|
|
113 |
return pseudo_wav
|
114 |
|
115 |
def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.BoolTensor:
|
|
|
117 |
range_tensor = ones.cumsum(dim=1)
|
118 |
return sequence_lengths.unsqueeze(1) >= range_tensor
|
119 |
|
120 |
+
# --- TransformerTTS Model Architecture (Copied from notebook)
|
121 |
+
class EncoderBlock(nn.Module):
|
122 |
def __init__(self):
|
123 |
super(EncoderBlock, self).__init__()
|
124 |
+
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
125 |
+
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
|
126 |
self.dropout_1 = torch.nn.Dropout(0.1)
|
127 |
+
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
128 |
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
|
129 |
self.dropout_2 = torch.nn.Dropout(0.1)
|
130 |
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
|
131 |
self.dropout_3 = torch.nn.Dropout(0.1)
|
132 |
def forward(self, x, attn_mask=None, key_padding_mask=None):
|
133 |
+
x_out = self.norm_1(x)
|
134 |
+
x_out, _ = self.attn(query=x_out, key=x_out, value=x_out, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
|
135 |
+
x_out = self.dropout_1(x_out)
|
136 |
+
x = x + x_out
|
137 |
+
x_out = self.norm_2(x)
|
138 |
+
x_out = self.linear_1(x_out)
|
139 |
+
x_out = F.relu(x_out)
|
140 |
+
x_out = self.dropout_2(x_out)
|
141 |
+
x_out = self.linear_2(x_out)
|
142 |
+
x_out = self.dropout_3(x_out)
|
143 |
+
x = x + x_out
|
144 |
+
return x
|
145 |
+
|
146 |
+
class DecoderBlock(nn.Module):
|
147 |
def __init__(self):
|
148 |
super(DecoderBlock, self).__init__()
|
149 |
+
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
150 |
+
self.self_attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
|
151 |
self.dropout_1 = torch.nn.Dropout(0.1)
|
152 |
+
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
153 |
+
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
|
154 |
self.dropout_2 = torch.nn.Dropout(0.1)
|
155 |
+
self.norm_3 = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
156 |
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
|
157 |
self.dropout_3 = torch.nn.Dropout(0.1)
|
158 |
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
|
159 |
self.dropout_4 = torch.nn.Dropout(0.1)
|
160 |
def forward(self, x, memory, x_attn_mask=None, x_key_padding_mask=None, memory_attn_mask=None, memory_key_padding_mask=None):
|
161 |
+
x_out, _ = self.self_attn(query=x, key=x, value=x, attn_mask=x_attn_mask, key_padding_mask=x_key_padding_mask)
|
162 |
+
x_out = self.dropout_1(x_out)
|
163 |
+
x = self.norm_1(x + x_out)
|
164 |
+
x_out, _ = self.attn(query=x, key=memory, value=memory, attn_mask=memory_attn_mask, key_padding_mask=memory_key_padding_mask)
|
165 |
+
x_out = self.dropout_2(x_out)
|
166 |
+
x = self.norm_2(x + x_out)
|
167 |
+
x_out = self.linear_1(x)
|
168 |
+
x_out = F.relu(x_out)
|
169 |
+
x_out = self.dropout_3(x_out)
|
170 |
+
x_out = self.linear_2(x_out)
|
171 |
+
x_out = self.dropout_4(x_out)
|
172 |
+
x = self.norm_3(x + x_out)
|
173 |
+
return x
|
174 |
+
|
175 |
+
class EncoderPreNet(nn.Module):
|
176 |
def __init__(self):
|
177 |
super(EncoderPreNet, self).__init__()
|
178 |
+
self.embedding = nn.Embedding(num_embeddings=hp.text_num_embeddings, embedding_dim=hp.encoder_embedding_size)
|
179 |
self.linear_1 = nn.Linear(hp.encoder_embedding_size, hp.encoder_embedding_size)
|
180 |
self.linear_2 = nn.Linear(hp.encoder_embedding_size, hp.embedding_size)
|
181 |
+
self.conv_1 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
|
182 |
+
self.bn_1 = nn.BatchNorm1d(hp.encoder_embedding_size)
|
183 |
+
self.dropout_1 = torch.nn.Dropout(0.5)
|
184 |
+
self.conv_2 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
|
185 |
+
self.bn_2 = nn.BatchNorm1d(hp.encoder_embedding_size)
|
186 |
+
self.dropout_2 = torch.nn.Dropout(0.5)
|
187 |
+
self.conv_3 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
|
188 |
+
self.bn_3 = nn.BatchNorm1d(hp.encoder_embedding_size)
|
189 |
+
self.dropout_3 = torch.nn.Dropout(0.5)
|
190 |
def forward(self, text):
|
191 |
+
x = self.embedding(text)
|
192 |
+
x = self.linear_1(x)
|
193 |
+
x = x.transpose(2, 1)
|
194 |
+
x = self.conv_1(x)
|
195 |
+
x = self.bn_1(x)
|
196 |
+
x = F.relu(x)
|
197 |
+
x = self.dropout_1(x)
|
198 |
+
x = self.conv_2(x)
|
199 |
+
x = self.bn_2(x)
|
200 |
+
x = F.relu(x)
|
201 |
+
x = self.dropout_2(x)
|
202 |
+
x = self.conv_3(x)
|
203 |
+
x = self.bn_3(x)
|
204 |
+
x = F.relu(x)
|
205 |
+
x = self.dropout_3(x)
|
206 |
+
x = x.transpose(1, 2)
|
207 |
+
x = self.linear_2(x)
|
208 |
+
return x
|
209 |
+
|
210 |
+
class PostNet(nn.Module):
|
211 |
def __init__(self):
|
212 |
super(PostNet, self).__init__()
|
213 |
+
self.conv_1 = nn.Conv1d(hp.mel_freq, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
214 |
+
self.bn_1 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
215 |
+
self.dropout_1 = torch.nn.Dropout(0.5)
|
216 |
+
self.conv_2 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
217 |
+
self.bn_2 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
218 |
+
self.dropout_2 = torch.nn.Dropout(0.5)
|
219 |
+
self.conv_3 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
220 |
+
self.bn_3 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
221 |
+
self.dropout_3 = torch.nn.Dropout(0.5)
|
222 |
+
self.conv_4 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
223 |
+
self.bn_4 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
224 |
+
self.dropout_4 = torch.nn.Dropout(0.5)
|
225 |
+
self.conv_5 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
226 |
+
self.bn_5 = nn.BatchNorm1d(hp.postnet_embedding_size)
|
227 |
+
self.dropout_5 = torch.nn.Dropout(0.5)
|
228 |
+
self.conv_6 = nn.Conv1d(hp.postnet_embedding_size, hp.mel_freq, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
|
229 |
+
self.bn_6 = nn.BatchNorm1d(hp.mel_freq)
|
230 |
+
self.dropout_6 = torch.nn.Dropout(0.5)
|
231 |
def forward(self, x):
|
232 |
+
x = x.transpose(2, 1)
|
233 |
+
x = self.conv_1(x)
|
234 |
+
x = self.bn_1(x); x = torch.tanh(x); x = self.dropout_1(x)
|
235 |
+
x = self.conv_2(x)
|
236 |
+
x = self.bn_2(x); x = torch.tanh(x); x = self.dropout_2(x)
|
237 |
+
x = self.conv_3(x)
|
238 |
+
x = self.bn_3(x); x = torch.tanh(x); x = self.dropout_3(x)
|
239 |
+
x = self.conv_4(x)
|
240 |
+
x = self.bn_4(x); x = torch.tanh(x); x = self.dropout_4(x)
|
241 |
+
x = self.conv_5(x)
|
242 |
+
x = self.bn_5(x); x = torch.tanh(x); x = self.dropout_5(x)
|
243 |
+
x = self.conv_6(x)
|
244 |
+
x = self.bn_6(x); x = self.dropout_6(x)
|
245 |
+
x = x.transpose(1, 2)
|
246 |
+
return x
|
247 |
+
|
248 |
+
class DecoderPreNet(nn.Module):
|
249 |
def __init__(self):
|
250 |
super(DecoderPreNet, self).__init__()
|
251 |
self.linear_1 = nn.Linear(hp.mel_freq, hp.embedding_size)
|
252 |
self.linear_2 = nn.Linear(hp.embedding_size, hp.embedding_size)
|
253 |
def forward(self, x):
|
254 |
+
x = self.linear_1(x)
|
255 |
+
x = F.relu(x)
|
256 |
+
x = F.dropout(x, p=0.5, training=True)
|
257 |
+
x = self.linear_2(x)
|
258 |
+
x = F.relu(x)
|
259 |
+
x = F.dropout(x, p=0.5, training=True)
|
260 |
return x
|
261 |
|
262 |
+
class TransformerTTS(nn.Module):
|
263 |
+
def __init__(self, device=DEVICE):
|
264 |
super(TransformerTTS, self).__init__()
|
265 |
self.encoder_prenet = EncoderPreNet()
|
266 |
self.decoder_prenet = DecoderPreNet()
|
267 |
self.postnet = PostNet()
|
268 |
+
self.pos_encoding = nn.Embedding(num_embeddings=hp.max_mel_time, embedding_dim=hp.embedding_size)
|
269 |
+
self.encoder_block_1 = EncoderBlock()
|
270 |
+
self.encoder_block_2 = EncoderBlock()
|
271 |
+
self.encoder_block_3 = EncoderBlock()
|
272 |
+
self.decoder_block_1 = DecoderBlock()
|
273 |
+
self.decoder_block_2 = DecoderBlock()
|
274 |
+
self.decoder_block_3 = DecoderBlock()
|
275 |
self.linear_1 = nn.Linear(hp.embedding_size, hp.mel_freq)
|
276 |
self.linear_2 = nn.Linear(hp.embedding_size, 1)
|
277 |
+
self.norm_memory = nn.LayerNorm(normalized_shape=hp.embedding_size)
|
278 |
+
def forward(self, text, text_len, mel, mel_len):
|
279 |
+
N = text.shape[0]; S = text.shape[1]; TIME = mel.shape[1]
|
280 |
+
self.src_key_padding_mask = torch.zeros((N, S), device=text.device).masked_fill(~mask_from_seq_lengths(text_len, max_length=S), float("-inf"))
|
281 |
+
self.src_mask = torch.zeros((S, S), device=text.device).masked_fill(torch.triu(torch.full((S, S), True, dtype=torch.bool), diagonal=1).to(text.device), float("-inf"))
|
282 |
+
self.tgt_key_padding_mask = torch.zeros((N, TIME), device=mel.device).masked_fill(~mask_from_seq_lengths(mel_len, max_length=TIME), float("-inf"))
|
283 |
+
self.tgt_mask = torch.zeros((TIME, TIME), device=mel.device).masked_fill(torch.triu(torch.full((TIME, TIME), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf"))
|
284 |
+
self.memory_mask = torch.zeros((TIME, S), device=mel.device).masked_fill(torch.triu(torch.full((TIME, S), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
text_x = self.encoder_prenet(text)
|
286 |
+
pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time).to(mel.device))
|
287 |
+
S = text_x.shape[1]; text_x = text_x + pos_codes[:S]
|
|
|
288 |
text_x = self.encoder_block_1(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
|
289 |
text_x = self.encoder_block_2(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
|
290 |
text_x = self.encoder_block_3(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
|
291 |
text_x = self.norm_memory(text_x)
|
292 |
+
mel_x = self.decoder_prenet(mel); mel_x = mel_x + pos_codes[:TIME]
|
|
|
|
|
|
|
293 |
mel_x = self.decoder_block_1(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
|
294 |
mel_x = self.decoder_block_2(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
|
295 |
mel_x = self.decoder_block_3(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
|
|
|
296 |
mel_linear = self.linear_1(mel_x)
|
297 |
+
mel_postnet = self.postnet(mel_linear)
|
298 |
+
mel_postnet = mel_linear + mel_postnet
|
299 |
+
stop_token = self.linear_2(mel_x)
|
300 |
+
bool_mel_mask = self.tgt_key_padding_mask.ne(0).unsqueeze(-1).repeat(1, 1, hp.mel_freq)
|
301 |
+
mel_linear = mel_linear.masked_fill(bool_mel_mask, 0)
|
302 |
+
mel_postnet = mel_postnet.masked_fill(bool_mel_mask, 0)
|
303 |
+
stop_token = stop_token.masked_fill(bool_mel_mask[:, :, 0].unsqueeze(-1), 1e3).squeeze(2)
|
|
|
|
|
|
|
|
|
|
|
304 |
return mel_postnet, mel_linear, stop_token
|
305 |
|
306 |
+
@torch.no_grad()
|
307 |
+
def inference(self, text, max_length=800, stop_token_threshold=0.5, with_tqdm=True):
|
308 |
+
self.eval(); self.train(False)
|
309 |
+
text_lengths = torch.tensor(text.shape[1]).unsqueeze(0).to(DEVICE)
|
|
|
|
|
|
|
|
|
310 |
N = 1
|
311 |
+
SOS = torch.zeros((N, 1, hp.mel_freq), device=DEVICE)
|
312 |
mel_padded = SOS
|
313 |
+
mel_lengths = torch.tensor(1).unsqueeze(0).to(DEVICE)
|
314 |
+
stop_token_outputs = torch.FloatTensor([]).to(text.device)
|
315 |
+
iters = range(max_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
for _ in iters:
|
317 |
+
mel_postnet, mel_linear, stop_token = self(text, text_lengths, mel_padded, mel_lengths)
|
|
|
|
|
|
|
|
|
318 |
mel_padded = torch.cat([mel_padded, mel_postnet[:, -1:, :]], dim=1)
|
319 |
+
if torch.sigmoid(stop_token[:, -1]) > stop_token_threshold:
|
|
|
|
|
|
|
|
|
320 |
break
|
321 |
else:
|
|
|
322 |
stop_token_outputs = torch.cat([stop_token_outputs, stop_token[:, -1:]], dim=1)
|
323 |
+
mel_lengths = torch.tensor(mel_padded.shape[1]).unsqueeze(0).to(DEVICE)
|
324 |
+
return mel_postnet, stop_token_outputs
|
325 |
|
326 |
+
# Part 3: Model Loading
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
|
329 |
+
# IMPORTANT: These paths assume you have placed the downloaded models
|
330 |
+
# into a 'models' subfolder in your project directory.
|
331 |
+
# ---------------------------------
|
332 |
+
# --- Part 3: Model Loading (from Hugging Face Hub)
|
333 |
+
# ---------------------------------
|
334 |
+
|
335 |
+
# IMPORTANT: Replace "your-username" with your Hugging Face username
|
336 |
+
# and the model names with the ones you created on the Hub.
|
337 |
TTS_MODEL_HUB_ID = "MoHamdyy/transformer-tts-ljspeech"
|
338 |
ASR_HUB_ID = "MoHamdyy/whisper-stt-model"
|
339 |
MARIAN_HUB_ID = "MoHamdyy/marian-ar-en-translation"
|
340 |
|
341 |
+
# Helper function to download the TTS model file from the Hub
|
342 |
+
from huggingface_hub import hf_hub_download
|
343 |
+
|
344 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
345 |
print("Loading models from Hugging Face Hub to device:", DEVICE)
|
|
|
346 |
|
347 |
+
# Load TTS Model from Hub
|
348 |
try:
|
349 |
print("Loading TTS model...")
|
350 |
+
# Download the .pt file from its repo
|
351 |
tts_model_path = hf_hub_download(repo_id=TTS_MODEL_HUB_ID, filename="train_SimpleTransfromerTTS.pt")
|
352 |
state = torch.load(tts_model_path, map_location=DEVICE)
|
353 |
+
TTS_MODEL = TransformerTTS().to(DEVICE)
|
354 |
+
# Check for the correct key in the state dictionary
|
355 |
+
if "model" in state:
|
356 |
+
TTS_MODEL.load_state_dict(state["model"])
|
357 |
+
elif "state_dict" in state:
|
358 |
+
TTS_MODEL.load_state_dict(state["state_dict"])
|
359 |
+
else:
|
360 |
+
TTS_MODEL.load_state_dict(state) # Assume the whole file is the state_dict
|
361 |
TTS_MODEL.eval()
|
362 |
print("TTS model loaded successfully.")
|
363 |
+
except Exception as e:
|
364 |
+
print(f"Error loading TTS model: {e}")
|
365 |
+
TTS_MODEL = None
|
366 |
|
367 |
+
# Load STT (Whisper) Model from Hub
|
368 |
try:
|
369 |
print("Loading STT (Whisper) model...")
|
370 |
stt_processor = WhisperProcessor.from_pretrained(ASR_HUB_ID)
|
371 |
stt_model = WhisperForConditionalGeneration.from_pretrained(ASR_HUB_ID).to(DEVICE).eval()
|
372 |
print("STT model loaded successfully.")
|
373 |
+
except Exception as e:
|
374 |
+
print(f"Error loading STT model: {e}")
|
375 |
+
stt_processor = None
|
376 |
+
stt_model = None
|
377 |
|
378 |
+
# Load TTT (MarianMT) Model from Hub
|
379 |
try:
|
380 |
print("Loading TTT (MarianMT) model...")
|
381 |
mt_tokenizer = MarianTokenizer.from_pretrained(MARIAN_HUB_ID)
|
382 |
mt_model = MarianMTModel.from_pretrained(MARIAN_HUB_ID).to(DEVICE).eval()
|
383 |
print("TTT model loaded successfully.")
|
384 |
+
except Exception as e:
|
385 |
+
print(f"Error loading TTT model: {e}")
|
386 |
+
mt_tokenizer = None
|
387 |
+
mt_model = None
|
388 |
+
|
389 |
+
|
390 |
|
391 |
+
# Part 4: Full Pipeline Function
|
392 |
+
|
393 |
+
|
394 |
+
def full_speech_translation_pipeline(audio_input_path: str):
|
395 |
print(f"--- PIPELINE START: Processing {audio_input_path} ---")
|
396 |
+
if audio_input_path is None or not os.path.exists(audio_input_path):
|
397 |
+
msg = "Error: Audio file not provided or not found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
print(msg)
|
399 |
+
# Return empty/default values
|
400 |
+
return "Error: No file", "", (hp.sr, np.array([]).astype(np.float32))
|
401 |
|
402 |
# STT Stage
|
403 |
arabic_transcript = "STT Error: Processing failed."
|
|
|
416 |
generated_ids = stt_model.generate(inputs, forced_decoder_ids=forced_ids, max_length=448)
|
417 |
arabic_transcript = stt_processor.decode(generated_ids[0], skip_special_tokens=True).strip()
|
418 |
print(f"STT Output: {arabic_transcript}")
|
|
|
419 |
except Exception as e:
|
420 |
+
print(f"STT Error: {e}")
|
|
|
|
|
421 |
|
422 |
# TTT Stage
|
423 |
english_translation = "TTT Error: Processing failed."
|
424 |
+
if arabic_transcript and not arabic_transcript.startswith("STT Error"):
|
|
|
425 |
try:
|
426 |
print("TTT: Translating to English...")
|
427 |
batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True).to(DEVICE)
|
|
|
429 |
translated_ids = mt_model.generate(**batch, max_length=512)
|
430 |
english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
|
431 |
print(f"TTT Output: {english_translation}")
|
|
|
432 |
except Exception as e:
|
433 |
+
print(f"TTT Error: {e}")
|
434 |
+
else:
|
435 |
+
english_translation = "(Skipped TTT due to STT failure)"
|
|
|
436 |
print(english_translation)
|
|
|
|
|
|
|
437 |
|
438 |
# TTS Stage
|
439 |
synthesized_audio_np = np.array([]).astype(np.float32)
|
440 |
+
if english_translation and not english_translation.startswith("TTT Error"):
|
441 |
try:
|
442 |
print("TTS: Synthesizing English speech...")
|
443 |
+
sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
|
|
|
|
|
|
|
|
|
|
|
444 |
generated_mel, _ = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time-20, stop_token_threshold=0.5, with_tqdm=False)
|
445 |
|
446 |
print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
|
447 |
+
if generated_mel is not None and generated_mel.numel() > 0:
|
448 |
+
mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1)
|
449 |
audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder)
|
450 |
synthesized_audio_np = audio_tensor.cpu().numpy()
|
451 |
print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
|
|
|
|
|
|
|
452 |
except Exception as e:
|
453 |
+
print(f"TTS Error: {e}")
|
454 |
+
|
|
|
|
|
|
|
|
|
|
|
455 |
print(f"--- PIPELINE END ---")
|
456 |
+
return arabic_transcript, english_translation, (hp.sr, synthesized_audio_np)
|
457 |
+
|
458 |
+
|
459 |
+
# Part 5: FastAPI Application
|
460 |
+
|
461 |
+
app = FastAPI()
|
462 |
+
|
463 |
+
# Allow Cross-Origin Resource Sharing (CORS) for your frontend
|
464 |
+
app.add_middleware(
|
465 |
+
CORSMiddleware,
|
466 |
+
allow_origins=["*"], # Allows all origins
|
467 |
+
allow_credentials=True,
|
468 |
+
allow_methods=["*"], # Allows all methods
|
469 |
+
allow_headers=["*"], # Allows all headers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
)
|
471 |
+
|
472 |
+
@app.post("/process-speech/")
|
473 |
+
async def create_upload_file(file: UploadFile = File(...)):
|
474 |
+
# Save the uploaded file temporarily
|
475 |
+
temp_path = f"/tmp/{file.filename}"
|
476 |
+
with open(temp_path, "wb") as buffer:
|
477 |
+
shutil.copyfileobj(file.file, buffer)
|
478 |
+
|
479 |
+
# Run the full pipeline
|
480 |
+
arabic, english, (sr, audio_np) = full_speech_translation_pipeline(temp_path)
|
481 |
+
|
482 |
+
# Prepare the audio to be sent back as base64
|
483 |
+
audio_base64 = ""
|
484 |
+
if audio_np.size > 0:
|
485 |
+
temp_wav_path = "/tmp/output.wav"
|
486 |
+
sf.write(temp_wav_path, audio_np, sr)
|
487 |
+
with open(temp_wav_path, "rb") as wav_file:
|
488 |
+
audio_bytes = wav_file.read()
|
489 |
+
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
|
490 |
+
|
491 |
+
# Return all results in a single JSON response
|
492 |
+
return {
|
493 |
+
"arabic_transcript": arabic,
|
494 |
+
"english_translation": english,
|
495 |
+
"audio_data": {
|
496 |
+
"sample_rate": sr,
|
497 |
+
"base64": audio_base64
|
498 |
+
}
|
499 |
+
}
|
500 |
+
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|