File size: 7,493 Bytes
b911d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
"""ResNet in PyTorch.
ImageNet-Style ResNet
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
Adapted from: https://github.com/bearpaw/pytorch-classification
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, is_last=False):
super(BasicBlock, self).__init__()
self.is_last = is_last
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
preact = out
out = F.relu(out)
if self.is_last:
return out, preact
else:
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, is_last=False):
super(Bottleneck, self).__init__()
self.is_last = is_last
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
preact = out
out = F.relu(out)
if self.is_last:
return out, preact
else:
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, in_channel=3, zero_init_residual=False, pool=False):
super(ResNet, self).__init__()
self.in_planes = 64
if pool:
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=7, stride=2, padding=3, bias=False)
else:
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) if pool else nn.Identity()
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves
# like an identity. This improves the model by 0.2~0.3% according to:
# https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for i in range(num_blocks):
stride = strides[i]
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x, layer=100):
out = self.maxpool(F.relu(self.bn1(self.conv1(x))))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = torch.flatten(out, 1)
return out
def resnet18(**kwargs):
return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
def resnet34(**kwargs):
return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
def resnet50(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
def resnet101(**kwargs):
return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
model_dict = {
'resnet18': [resnet18, 512],
'resnet34': [resnet34, 512],
'resnet50': [resnet50, 2048],
'resnet101': [resnet101, 2048],
}
class LinearBatchNorm(nn.Module):
"""Implements BatchNorm1d by BatchNorm2d, for SyncBN purpose"""
def __init__(self, dim, affine=True):
super(LinearBatchNorm, self).__init__()
self.dim = dim
self.bn = nn.BatchNorm2d(dim, affine=affine)
def forward(self, x):
x = x.view(-1, self.dim, 1, 1)
x = self.bn(x)
x = x.view(-1, self.dim)
return x
class SupConResNet(nn.Module):
"""backbone + projection head"""
def __init__(self, name='resnet50', head='mlp', feat_dim=128, pool=False):
super(SupConResNet, self).__init__()
model_fun, dim_in = model_dict[name]
self.encoder = model_fun(pool=pool)
if head == 'linear':
self.head = nn.Linear(dim_in, feat_dim)
elif head == 'mlp':
self.head = nn.Sequential(
nn.Linear(dim_in, dim_in),
nn.ReLU(inplace=True),
nn.Linear(dim_in, feat_dim)
)
else:
raise NotImplementedError(
'head not supported: {}'.format(head))
def forward(self, x):
feat = self.encoder(x)
feat = F.normalize(self.head(feat), dim=1)
return feat
class SupCEResNet(nn.Module):
"""encoder + classifier"""
def __init__(self, name='resnet50', num_classes=10, pool=False):
super(SupCEResNet, self).__init__()
model_fun, dim_in = model_dict[name]
self.encoder = model_fun(pool=pool)
self.fc = nn.Linear(dim_in, num_classes)
def forward(self, x):
return self.fc(self.encoder(x))
class LinearClassifier(nn.Module):
"""Linear classifier"""
def __init__(self, name='resnet50', num_classes=10):
super(LinearClassifier, self).__init__()
_, feat_dim = model_dict[name]
self.fc = nn.Linear(feat_dim, num_classes)
def forward(self, features):
return self.fc(features)
|