final / app.py
Moditha24's picture
Update app.py
57b4f24 verified
raw
history blame
3.86 kB
import gradio as gr
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
import os
from ResNet_for_CC import CC_model # Import the model
# Set device (CPU/GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the trained CC_model
model_path = "CC_net.pt"
model = CC_model(num_classes1=14)
# Load model weights
state_dict = torch.load(model_path, map_location=device)
model.load_state_dict(state_dict, strict=False)
model.to(device)
model.eval()
# Clothing1M Class Labels
class_labels = [
"T-Shirt", "Shirt", "Knitwear", "Chiffon", "Sweater", "Hoodie",
"Windbreaker", "Jacket", "Downcoat", "Suit", "Shawl", "Dress",
"Vest", "Underwear"
]
# **Predefined Default Images**
default_images = {
"Shawl": "shawlOG.webp",
"Jacket": "jacket.jpg",
"Sweater": "sweater.webp",
"Vest": "dress.jpg"
}
# Convert to gallery format (list of (image_path, caption) tuples)
default_images_gallery = [(path, label) for label, path in default_images.items()]
# **Image Preprocessing Function**
def preprocess_image(image):
"""Applies necessary transformations to the input image."""
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
return transform(image).unsqueeze(0).to(device)
# **Classification Function**
def classify_image(selected_default, uploaded_image):
"""Processes either a default or uploaded image and returns the predicted clothing category."""
try:
# Use the uploaded image if provided; otherwise, use the selected default image
if uploaded_image is not None:
image = Image.fromarray(uploaded_image)
else:
image_path = default_images[selected_default]
image = Image.open(image_path)
image = preprocess_image(image)
with torch.no_grad():
output = model(image)
if isinstance(output, tuple):
output = output[1]
probabilities = F.softmax(output, dim=1)
predicted_class = torch.argmax(probabilities, dim=1).item()
if 0 <= predicted_class < len(class_labels):
predicted_label = class_labels[predicted_class]
confidence = probabilities[0][predicted_class].item() * 100
return f"Predicted Class: {predicted_label} (Confidence: {confidence:.2f}%)"
else:
return "[ERROR] Model returned an invalid class index."
except Exception as e:
return f"Error in classification: {e}"
# **Gradio Interface**
with gr.Blocks() as interface:
gr.Markdown("# Clothing1M Image Classifier")
gr.Markdown("Upload a clothing image or select from the predefined images below.")
# Gallery to display default images
gallery = gr.Gallery(
value=default_images_gallery, # Provide list of (image, caption) tuples
label="Default Images",
elem_id="default_gallery"
)
# Default Image Selection
default_selector = gr.Dropdown(
choices=list(default_images.keys()),
label="Select a Default Image",
value="Shawl"
)
# File Upload Option
image_upload = gr.Image(type="numpy", label="Or Upload Your Own Image")
# Output Text
output_text = gr.Textbox(label="Classification Result")
# Classify Button
classify_button = gr.Button("Classify Image")
# Define Action
classify_button.click(
fn=classify_image,
inputs=[default_selector, image_upload],
outputs=output_text
)
# **Run the Interface**
if __name__ == "__main__":
print("[INFO] Launching Gradio interface...")
interface.launch()