Moditha24 commited on
Commit
3e2465e
Β·
verified Β·
1 Parent(s): 4a80f4f

Delete app (1).py

Browse files
Files changed (1) hide show
  1. app (1).py +0 -95
app (1).py DELETED
@@ -1,95 +0,0 @@
1
- import gradio as gr
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- import torchvision.transforms as transforms
6
- from PIL import Image
7
- from ResNet_for_CC import CC_model # Import the model
8
-
9
- # Set device (CPU/GPU)
10
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
-
12
- # Load the trained CC_model
13
- model_path = "CC_net.pt"
14
- model = CC_model(num_classes1=14)
15
-
16
- # Load model weights
17
- state_dict = torch.load(model_path, map_location=device)
18
- model.load_state_dict(state_dict, strict=False)
19
- model.to(device)
20
- model.eval()
21
-
22
- # Clothing1M Class Labels
23
- class_labels = [
24
- "T-Shirt", "Shirt", "Knitwear", "Chiffon", "Sweater", "Hoodie",
25
- "Windbreaker", "Jacket", "Downcoat", "Suit", "Shawl", "Dress",
26
- "Vest", "Underwear"
27
- ]
28
-
29
- # βœ… **Updated Image Preprocessing Function**
30
- def preprocess_image(image):
31
- """Applies necessary transformations to the input image."""
32
- transform = transforms.Compose([
33
- transforms.Resize(256),
34
- transforms.CenterCrop(224),
35
- transforms.ToTensor(),
36
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
37
- ])
38
- return transform(image).unsqueeze(0).to(device)
39
-
40
- # βœ… **Classification Function**
41
- def classify_image(image):
42
- """Processes the input image and returns the predicted clothing category."""
43
- print("\n[INFO] Received image for classification.")
44
-
45
- try:
46
- image = Image.fromarray(image) # Ensure conversion to PIL format
47
- image = preprocess_image(image) # Apply transformations
48
- print("[INFO] Image transformed and moved to device.")
49
-
50
- with torch.no_grad():
51
- output = model(image)
52
-
53
- # βœ… Ensure output is a tensor (handle tuple case)
54
- if isinstance(output, tuple):
55
- output = output[1] # Extract the actual output tensor
56
-
57
- print(f"[DEBUG] Model output shape: {output.shape}")
58
- print(f"[DEBUG] Model output values: {output}")
59
-
60
- if output.shape[1] != 14:
61
- return f"[ERROR] Model output mismatch! Expected 14 but got {output.shape[1]}."
62
-
63
- # Convert logits to probabilities
64
- probabilities = F.softmax(output, dim=1)
65
- print(f"[DEBUG] Softmax probabilities: {probabilities}")
66
-
67
- # Get predicted class index
68
- predicted_class = torch.argmax(probabilities, dim=1).item()
69
- print(f"[INFO] Predicted class index: {predicted_class} (Class: {class_labels[predicted_class]})")
70
-
71
- # Validate and return the prediction
72
- if 0 <= predicted_class < len(class_labels):
73
- predicted_label = class_labels[predicted_class]
74
- confidence = probabilities[0][predicted_class].item() * 100
75
- return f"Predicted Class: {predicted_label} (Confidence: {confidence:.2f}%)"
76
- else:
77
- return "[ERROR] Model returned an invalid class index."
78
-
79
- except Exception as e:
80
- print(f"[ERROR] Exception during classification: {e}")
81
- return "Error in classification. Check console for details."
82
-
83
- # βœ… **Gradio Interface**
84
- interface = gr.Interface(
85
- fn=classify_image,
86
- inputs=gr.Image(type="numpy"),
87
- outputs="text",
88
- title="Clothing1M Image Classifier",
89
- description="Upload a clothing image, and the model will classify it into one of the 14 categories."
90
- )
91
-
92
- # βœ… **Run the Interface**
93
- if __name__ == "__main__":
94
- print("[INFO] Launching Gradio interface...")
95
- interface.launch()