|
import torch |
|
import spaces |
|
import gradio as gr |
|
from pytube import YouTube |
|
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
import tempfile |
|
import os |
|
|
|
MODEL_NAME = "MohamedRashad/Arabic-Whisper-CodeSwitching-Edition" |
|
BATCH_SIZE = 8 |
|
FILE_LIMIT_MB = 1000*3 |
|
YT_LENGTH_LIMIT_S = 60*60*3 |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
processor = WhisperProcessor.from_pretrained(MODEL_NAME) |
|
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16) |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
@spaces.GPU(duration=120) |
|
def transcribe(inputs, task): |
|
if inputs is None: |
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") |
|
|
|
generate_kwargs = {"task": task, "language": "arabic" if task == "transcribe" else "english"} |
|
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs=generate_kwargs, return_timestamps=True)["text"] |
|
return text |
|
|
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = YouTube(yt_url).video_id |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
def download_yt_audio(yt_url, filename): |
|
yt = YouTube(yt_url) |
|
|
|
if yt.length > YT_LENGTH_LIMIT_S: |
|
raise gr.Error("YouTube video is too long! Please upload a video that is less than 1 hour long.") |
|
|
|
stream = yt.streams.filter(only_audio=True).first() |
|
stream.download(filename=filename) |
|
|
|
def seconds_to_timestamp(seconds): |
|
total_seconds = int(seconds) |
|
hours = total_seconds // 3600 |
|
minutes = (total_seconds % 3600) // 60 |
|
remaining_seconds = seconds % 60 |
|
return f"{hours:02d}:{minutes:02d}:{remaining_seconds:06.3f}" |
|
|
|
|
|
def chunks_to_subtitle(chunks): |
|
subtitle = "" |
|
for chunk in chunks: |
|
start = seconds_to_timestamp(chunk["timestamp"][0]) |
|
end = seconds_to_timestamp(chunk["timestamp"][1]) |
|
text = chunk["text"] |
|
subtitle += f"{start} --> {end}\n{text}\n\n" |
|
return subtitle |
|
|
|
@spaces.GPU(duration=120) |
|
def yt_transcribe(yt_url, task): |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
download_yt_audio(yt_url, filepath) |
|
with open(filepath, "rb") as f: |
|
inputs = f.read() |
|
|
|
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} |
|
|
|
generate_kwargs = {"task": task, "language": "arabic" if task == "transcribe" else "english"} |
|
output = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs=generate_kwargs, return_timestamps=True) |
|
subtitle = chunks_to_subtitle(output["chunks"]) |
|
|
|
return html_embed_str, subtitle |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(sources="microphone", type="filepath"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
], |
|
outputs="text", |
|
title="Arabic Whisper Code-Switching Edition: Transcribe Microphone", |
|
description=( |
|
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" |
|
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" |
|
" of arbitrary length." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
file_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(sources="upload", type="filepath", label="Audio file"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
], |
|
outputs="text", |
|
title="Arabic Whisper Code-Switching Edition: Transcribe Audio", |
|
description=( |
|
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" |
|
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" |
|
" of arbitrary length." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
yt_transcribe_demo = gr.Interface( |
|
fn=yt_transcribe, |
|
inputs=[ |
|
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
], |
|
outputs=["html", "text"], |
|
title="Arabic Whisper Code-Switching Edition: Transcribe YouTube Video", |
|
description=( |
|
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" |
|
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe video files of" |
|
" arbitrary length." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe_demo], ["Microphone", "Audio file", "YouTube"]) |
|
|
|
demo.queue().launch() |
|
|