File size: 3,999 Bytes
6d6af66
8b775e5
6d6af66
db7a2e8
a103b3b
8b775e5
ebb9438
 
 
 
6d6af66
8b775e5
db7a2e8
 
8b775e5
 
 
 
 
 
 
 
 
 
6d6af66
 
8b775e5
 
6d6af66
 
db7a2e8
6d6af66
 
 
db7a2e8
 
6d6af66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db7a2e8
 
8b775e5
6d6af66
 
 
 
8b775e5
6d6af66
 
 
 
8b775e5
6d6af66
8b775e5
 
 
6d6af66
8b775e5
 
 
 
 
 
fa63dda
7a086ec
6d6af66
 
 
 
 
 
 
 
 
 
8b775e5
6d6af66
a103b3b
6814c00
acc42fe
 
6814c00
 
a103b3b
 
 
bfb86b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a103b3b
420580f
389b598
e2feaed
ebb9438
 
daf8121
 
8b775e5
daf8121
1254e4a
b23ae71
a103b3b
 
 
e726d75
8b775e5
 
8a43307
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import atexit
import functools
from queue import Queue
from threading import Event, Thread
import time 

from paddleocr import PaddleOCR, draw_ocr
from PIL import Image
import gradio as gr


LANG_CONFIG = {
    "ch": {"num_workers": 2},
    "en": {"num_workers": 2},
    "fr": {"num_workers": 1},
    "german": {"num_workers": 1},
    "korean": {"num_workers": 1},
    "japan": {"num_workers": 1},
}
CONCURRENCY_LIMIT = 8


class PaddleOCRModelManager(object):
    def __init__(self,
                 num_workers,
                 model_factory):
        super().__init__()
        self._model_factory = model_factory
        self._queue = Queue()
        self._workers = []
        self._model_initialized_event = Event()
        for _ in range(num_workers):
            worker = Thread(target=self._worker, daemon=False)
            worker.start()
            self._model_initialized_event.wait()
            self._model_initialized_event.clear()
            self._workers.append(worker)

    def infer(self, *args, **kwargs):
        # XXX: Should I use a more lightweight data structure, say, a future?
        result_queue = Queue(maxsize=1)
        self._queue.put((args, kwargs, result_queue))
        success, payload = result_queue.get()
        if success:
            return payload
        else:
            raise payload

    def close(self):
        for _ in self._workers:
            self._queue.put(None)
        for worker in self._workers:
            worker.join()

    def _worker(self):
        model = self._model_factory()
        self._model_initialized_event.set()
        while True:
            item = self._queue.get()
            if item is None:
                break
            args, kwargs, result_queue = item
            try:
                result = model.ocr(*args, **kwargs)
                result_queue.put((True, result))
            except Exception as e:
                result_queue.put((False, e))
            finally:
                self._queue.task_done()


def create_model(lang):
    return PaddleOCR(lang=lang, use_angle_cls=True, use_gpu=False)


model_managers = {}
for lang, config in LANG_CONFIG.items():
    model_manager = PaddleOCRModelManager(config["num_workers"], functools.partial(create_model, lang=lang))
    model_managers[lang] = model_manager


def close_model_managers():
    for manager in model_managers.values():
        manager.close()


# XXX: Not sure if gradio allows adding custom teardown logic
atexit.register(close_model_managers)


def inference(img, lang):
    ocr = model_managers[lang]
    result = ocr.infer(img, cls=True)[0]

    if result is not None:
        for item in result:
            print(item)
    else:
        print("La variable 'result' es None, no hay elementos para procesar.")        

    print("Resultado de la inferencia: ")
    print(result)

    if result is not None:

        #Hacer ésto solo si result no es None.
        img_path = img
        image = Image.open(img_path).convert("RGB")
        boxes = [line[0] for line in result]
        txts = [line[1][0] for line in result]
        scores = [line[1][1] for line in result]
        im_show = draw_ocr(image, boxes, txts, scores,
                        font_path="./simfang.ttf")
        print("Impresión de todos los resultados: ")
        print("Boxes:")
        print(boxes)
        print("Texts:")
        print(txts)
        print("Scores:")
        print(scores)

    return result

css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
gr.Interface(
    inference,
    [
        gr.Image(type='filepath', label='Input'),
        gr.Dropdown(choices=list(LANG_CONFIG.keys()), value='en', label='language')
    ],
    #gr.Image(type='pil', label='Output'), #Resultado en imagen
    gr.Dataframe(),
    #title=title,
    #description=description,
    #examples=examples,
    cache_examples=False,
    css=css,
    concurrency_limit=CONCURRENCY_LIMIT,
    ).launch(debug=False, show_error=True)