Spaces:
Moibe
/
Sleeping

ai_ocr / app.py
Moibe's picture
Receive image in grapich mode
3af14b9
raw
history blame
4.4 kB
import atexit
import functools
from queue import Queue
from threading import Event, Thread
import time
from paddleocr import PaddleOCR, draw_ocr
from PIL import Image
import gradio as gr
LANG_CONFIG = {
"ch": {"num_workers": 2},
"en": {"num_workers": 2},
"fr": {"num_workers": 1},
"german": {"num_workers": 1},
"korean": {"num_workers": 1},
"japan": {"num_workers": 1},
}
CONCURRENCY_LIMIT = 8
class PaddleOCRModelManager(object):
def __init__(self,
num_workers,
model_factory):
super().__init__()
self._model_factory = model_factory
self._queue = Queue()
self._workers = []
self._model_initialized_event = Event()
for _ in range(num_workers):
worker = Thread(target=self._worker, daemon=False)
worker.start()
self._model_initialized_event.wait()
self._model_initialized_event.clear()
self._workers.append(worker)
def infer(self, *args, **kwargs):
# XXX: Should I use a more lightweight data structure, say, a future?
result_queue = Queue(maxsize=1)
self._queue.put((args, kwargs, result_queue))
success, payload = result_queue.get()
if success:
return payload
else:
raise payload
def close(self):
for _ in self._workers:
self._queue.put(None)
for worker in self._workers:
worker.join()
def _worker(self):
model = self._model_factory()
self._model_initialized_event.set()
while True:
item = self._queue.get()
if item is None:
break
args, kwargs, result_queue = item
try:
result = model.ocr(*args, **kwargs)
result_queue.put((True, result))
except Exception as e:
result_queue.put((False, e))
finally:
self._queue.task_done()
def create_model(lang):
return PaddleOCR(lang=lang, use_angle_cls=True, use_gpu=False)
model_managers = {}
for lang, config in LANG_CONFIG.items():
model_manager = PaddleOCRModelManager(config["num_workers"], functools.partial(create_model, lang=lang))
model_managers[lang] = model_manager
def close_model_managers():
for manager in model_managers.values():
manager.close()
# XXX: Not sure if gradio allows adding custom teardown logic
atexit.register(close_model_managers)
def inference(img, lang):
ocr = model_managers[lang]
result = ocr.infer(img, cls=True)[0]
print("Imprimiendo cada elemento de 'result' en un rengl贸n:")
for item in result:
print(item)
print("Resultado de la inferencia: ")
print(result)
img_path = img
image = Image.open(img_path).convert("RGB")
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores,
font_path="./simfang.ttf")
print("Impresi贸n de todos los resultados: ")
print("Boxes:")
print(boxes)
print("Texts:")
print(txts)
print("Scores:")
print(scores)
print("Detecci贸n de Nombre:")
#return "Hola Gradio"
return im_show
# title = 'PaddleOCR'
# description = '''
# - Gradio demo for PaddleOCR. PaddleOCR demo supports Chinese, English, French, German, Korean and Japanese.
# - To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to load them. Read more at the links below.
# - [Docs](https://paddlepaddle.github.io/PaddleOCR/), [Github Repository](https://github.com/PaddlePaddle/PaddleOCR).
# '''
# examples = [
# ['en_example.jpg','en'],
# ['cn_example.jpg','ch'],
# ['jp_example.jpg','japan'],
# ]
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
gr.Interface(
inference,
[
gr.Image(type='filepath', label='Input'),
gr.Dropdown(choices=list(LANG_CONFIG.keys()), value='en', label='language')
],
#gr.Image(type='pil', label='Output'), #Resultado en imagen
gr.Image(),
#title=title,
#description=description,
#examples=examples,
cache_examples=False,
css=css,
concurrency_limit=CONCURRENCY_LIMIT,
).launch(debug=False)