Spaces:
Running
Running
| import io | |
| import globales | |
| import herramientas | |
| import gradio_client | |
| from huggingface_hub import InferenceClient | |
| import conexion_firebase | |
| def genera_platillo_gpu(platillo): | |
| prompt = globales.previo + platillo | |
| print("Platillo enviado:", platillo) | |
| kwargs = { | |
| "prompt": prompt, | |
| "api_name": "/infer" | |
| } | |
| try: | |
| client = gradio_client.Client(globales.espacio, hf_token=globales.llave) | |
| result = client.predict(**kwargs | |
| # prompt=prompt, | |
| # negative_prompt="", | |
| # seed=42, | |
| # randomize_seed=True, | |
| # width=1024, | |
| # height=1024, | |
| # guidance_scale=3.5, | |
| # num_inference_steps=28, | |
| # api_name="/infer" | |
| ) | |
| #Cuando es GPU, debe de restar segundos disponibles de HF | |
| herramientas.restaSegundosGPU(globales.work_cost) | |
| print("Platillo generado:", platillo) | |
| print("Resultado regresado en result[0] es: ", result[0]) | |
| return result[0] | |
| except Exception as e: | |
| print("Excepci贸n es: ", e) | |
| # Opci贸n para regresar imagen gen茅rica. | |
| # return "default.png" | |
| return '{"Error 500": e}' | |
| def genera_platillo_inference(platillo): | |
| print("Proveedor:", globales.proveedor) | |
| modelo_actual = conexion_firebase.obtenDato('nowme', 'huggingface', 'modelo_actual') | |
| modelo = modelo_actual | |
| print("Modelo:", modelo) | |
| prompt = globales.previo + platillo | |
| print("Platillo enviado:", platillo) | |
| client = InferenceClient( | |
| provider= globales.proveedor, | |
| api_key=globales.llave | |
| ) | |
| try: | |
| image = client.text_to_image( | |
| prompt, | |
| model=modelo | |
| ) | |
| except Exception as e: | |
| print("Excepci贸n es: ", e) | |
| if "Gateway Time-out" in str(e): | |
| print("GATEWAY TIME-OUT 馃拃") | |
| modelo=globales.inferencia_backup | |
| #Escribe en txt el nuevo modelo. | |
| herramientas.modificaModeloActual(modelo) | |
| return f"Error: {e}" | |
| img_io = io.BytesIO() | |
| image.save(img_io, "PNG") | |
| img_io.seek(0) | |
| print("Platillo generado:", platillo) | |
| return img_io | |