Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import torch
|
|
3 |
import torch.nn as nn
|
4 |
from torchvision import models, transforms
|
5 |
from PIL import Image
|
6 |
-
import os
|
7 |
|
8 |
# Define the same custom residual block and EfficientNetWithNovelty model
|
9 |
class ResidualBlock(nn.Module):
|
@@ -53,11 +52,11 @@ class EfficientNetWithNovelty(nn.Module):
|
|
53 |
|
54 |
return x
|
55 |
|
56 |
-
# Load the model checkpoint
|
57 |
-
device = torch.device('
|
58 |
num_classes = 10 # Number of classes as per your dataset
|
59 |
model = EfficientNetWithNovelty(num_classes)
|
60 |
-
checkpoint = torch.load('best_model2.pth')
|
61 |
model.load_state_dict(checkpoint['model_state_dict'])
|
62 |
model.to(device)
|
63 |
model.eval()
|
|
|
3 |
import torch.nn as nn
|
4 |
from torchvision import models, transforms
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
# Define the same custom residual block and EfficientNetWithNovelty model
|
8 |
class ResidualBlock(nn.Module):
|
|
|
52 |
|
53 |
return x
|
54 |
|
55 |
+
# Load the model checkpoint on CPU
|
56 |
+
device = torch.device('cpu') # Ensure it's using CPU
|
57 |
num_classes = 10 # Number of classes as per your dataset
|
58 |
model = EfficientNetWithNovelty(num_classes)
|
59 |
+
checkpoint = torch.load('best_model2.pth', map_location=torch.device('cpu'))
|
60 |
model.load_state_dict(checkpoint['model_state_dict'])
|
61 |
model.to(device)
|
62 |
model.eval()
|