import gradio as gr import torch import torch.nn as nn from torchvision import models, transforms from PIL import Image # Define the same custom residual block and EfficientNetWithNovelty model class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(out_channels) # Skip connection self.skip = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) self.skip_bn = nn.BatchNorm2d(out_channels) def forward(self, x): identity = self.skip(x) x = self.relu(self.bn1(self.conv1(x))) x = self.bn2(self.conv2(x)) x += identity # Add skip connection x = self.relu(x) return x class EfficientNetWithNovelty(nn.Module): def __init__(self, num_classes): super(EfficientNetWithNovelty, self).__init__() # Load pre-trained EfficientNet-B0 model self.model = models.efficientnet_b0(pretrained=True) # Modify the final classifier layer for our number of classes self.model.classifier[1] = nn.Linear(self.model.classifier[1].in_features, num_classes) # Add the custom residual block after the EfficientNet feature extractor self.residual_block = ResidualBlock(1280, 1280) # 1280 is the output channels from EfficientNet B0 def forward(self, x): # Pass through the EfficientNet feature extractor x = self.model.features(x) # Access feature extraction part # Pass through the custom residual block x = self.residual_block(x) # Flatten the output to feed into the classifier x = x.mean([2, 3]) # Global Average Pooling x = self.model.classifier(x) # Pass through the final classifier layer return x # Load the model checkpoint on CPU device = torch.device('cpu') # Ensure it's using CPU num_classes = 10 # Number of classes as per your dataset model = EfficientNetWithNovelty(num_classes) checkpoint = torch.load('best_model2.pth', map_location=torch.device('cpu')) model.load_state_dict(checkpoint['model_state_dict']) model.to(device) model.eval() # Define image transformations for preprocessing transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # Define the class labels explicitly class_labels = [ "KNUCKLE", "LEGSPIN", "OFFSPIN", "OUTSWING", "STRAIGHT", "BACK_OF_HAND", "CARROM", "CROSSSEAM", "GOOGLY", "INSWING" ] # Prediction function def predict(image): # Preprocess image image = Image.fromarray(image) # Convert numpy array to PIL Image if it's from Gradio image = transform(image).unsqueeze(0).to(device) # Get model predictions with torch.no_grad(): output = model(image) _, predicted = torch.max(output, 1) # Get predicted class label predicted_label = class_labels[predicted.item()] return predicted_label # Gradio interface iface = gr.Interface( fn=predict, inputs=gr.Image(type="numpy", label="Upload Cricket Grip Image"), outputs=gr.Textbox(label="Predicted Grip Type"), live=True ) if __name__ == "__main__": iface.launch()