MoinulwithAI commited on
Commit
0d5c920
·
verified ·
1 Parent(s): 6413ed5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torchvision.transforms as transforms
5
+ from PIL import Image
6
+ import gradio as gr
7
+
8
+ # ------------------- Model Definition -------------------
9
+ class SimpleCNN(nn.Module):
10
+ def __init__(self, num_classes=1):
11
+ super(SimpleCNN, self).__init__()
12
+ self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
13
+ self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
14
+ self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
15
+ self.pool = nn.MaxPool2d(2, 2)
16
+ self.fc1 = nn.Linear(128 * 28 * 28, 512)
17
+ self.fc2 = nn.Linear(512, num_classes)
18
+
19
+ def forward(self, x):
20
+ x = self.pool(F.relu(self.conv1(x)))
21
+ x = self.pool(F.relu(self.conv2(x)))
22
+ x = self.pool(F.relu(self.conv3(x)))
23
+ x = x.view(-1, 128 * 28 * 28)
24
+ x = F.relu(self.fc1(x))
25
+ x = self.fc2(x)
26
+ return x
27
+
28
+ # ------------------- Load Model -------------------
29
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
+ model = SimpleCNN()
31
+ model.load_state_dict(torch.load("age_prediction_model1.pth", map_location=device))
32
+ model.to(device)
33
+ model.eval()
34
+
35
+ # ------------------- Transform -------------------
36
+ transform = transforms.Compose([
37
+ transforms.Resize((224, 224)),
38
+ transforms.ToTensor(),
39
+ transforms.Normalize([0.485, 0.456, 0.406],
40
+ [0.229, 0.224, 0.225])
41
+ ])
42
+
43
+ # ------------------- Prediction Function -------------------
44
+ def predict(image):
45
+ image = transform(image).unsqueeze(0).to(device)
46
+ with torch.no_grad():
47
+ output = model(image).squeeze().item()
48
+ return f"Predicted Age: {round(output, 2)} years"
49
+
50
+ # ------------------- Gradio Interface -------------------
51
+ iface = gr.Interface(fn=predict,
52
+ inputs=gr.Image(type="pil"),
53
+ outputs="text",
54
+ title="Face Age Prediction",
55
+ description="Upload a face image and get a predicted age")
56
+
57
+ iface.launch()