Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,74 @@
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
|
4 |
-
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
class SimpleCNN(nn.Module):
|
10 |
-
def __init__(self
|
11 |
super(SimpleCNN, self).__init__()
|
12 |
-
self.
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def forward(self, x):
|
20 |
-
x = self.
|
21 |
-
x = self.
|
22 |
-
x = self.pool(F.relu(self.conv3(x)))
|
23 |
-
x = x.view(-1, 128 * 28 * 28)
|
24 |
-
x = F.relu(self.fc1(x))
|
25 |
-
x = self.fc2(x)
|
26 |
return x
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
model = SimpleCNN()
|
31 |
-
model.load_state_dict(torch.load("age_prediction_model1.pth", map_location=device))
|
32 |
-
model.to(device)
|
33 |
-
model.eval()
|
34 |
|
35 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
transform = transforms.Compose([
|
37 |
-
transforms.Resize((
|
38 |
transforms.ToTensor(),
|
39 |
-
transforms.Normalize([0.
|
40 |
-
[0.229, 0.224, 0.225])
|
41 |
])
|
42 |
|
43 |
-
#
|
44 |
-
def
|
45 |
image = transform(image).unsqueeze(0).to(device)
|
46 |
with torch.no_grad():
|
47 |
-
output = model(image)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
|
57 |
iface.launch()
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
+
from torch.utils.data import Dataset, DataLoader, random_split
|
5 |
+
from torchvision import transforms
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
|
9 |
+
# -------- CONFIG --------
|
10 |
+
data_dir = "D:/Dataset/face_age"
|
11 |
+
checkpoint_path = "D:/Dataset/age_prediction_model2.pth"
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
print(f"Using device: {device}")
|
14 |
+
|
15 |
+
# -------- SIMPLE CNN MODEL --------
|
16 |
class SimpleCNN(nn.Module):
|
17 |
+
def __init__(self):
|
18 |
super(SimpleCNN, self).__init__()
|
19 |
+
self.features = nn.Sequential(
|
20 |
+
nn.Conv2d(3, 32, kernel_size=3, padding=1), nn.ReLU(),
|
21 |
+
nn.MaxPool2d(2), # 64x64
|
22 |
+
nn.Conv2d(32, 64, kernel_size=3, padding=1), nn.ReLU(),
|
23 |
+
nn.MaxPool2d(2), # 32x32
|
24 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(),
|
25 |
+
nn.MaxPool2d(2), # 16x16
|
26 |
+
)
|
27 |
+
self.classifier = nn.Sequential(
|
28 |
+
nn.Flatten(),
|
29 |
+
nn.Linear(128 * 16 * 16, 256), nn.ReLU(),
|
30 |
+
nn.Linear(256, 1) # Output: age (regression)
|
31 |
+
)
|
32 |
|
33 |
def forward(self, x):
|
34 |
+
x = self.features(x)
|
35 |
+
x = self.classifier(x)
|
|
|
|
|
|
|
|
|
36 |
return x
|
37 |
|
38 |
+
# -------- LOAD MODEL --------
|
39 |
+
model = SimpleCNN().to(device)
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Check if checkpoint exists before loading
|
42 |
+
if os.path.exists(checkpoint_path):
|
43 |
+
model.load_state_dict(torch.load(checkpoint_path))
|
44 |
+
model.eval() # Set the model to evaluation mode
|
45 |
+
print(f"Model loaded from {checkpoint_path}")
|
46 |
+
else:
|
47 |
+
print(f"Error: Checkpoint file not found at {checkpoint_path}. Please check the path.")
|
48 |
+
|
49 |
+
# -------- PREPROCESSING --------
|
50 |
transform = transforms.Compose([
|
51 |
+
transforms.Resize((128, 128)),
|
52 |
transforms.ToTensor(),
|
53 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
|
|
54 |
])
|
55 |
|
56 |
+
# -------- PREDICTION FUNCTION --------
|
57 |
+
def predict_age(image):
|
58 |
image = transform(image).unsqueeze(0).to(device)
|
59 |
with torch.no_grad():
|
60 |
+
output = model(image)
|
61 |
+
age = output.item() # Convert to a single scalar
|
62 |
+
return f"Predicted Age: {age:.2f}"
|
63 |
+
|
64 |
+
# -------- GRADIO INTERFACE --------
|
65 |
+
iface = gr.Interface(
|
66 |
+
fn=predict_age,
|
67 |
+
inputs=gr.inputs.Image(shape=(128, 128), image_mode='RGB', source='upload'),
|
68 |
+
outputs="text",
|
69 |
+
title="Age Prediction Model",
|
70 |
+
description="Upload an image to predict the age.",
|
71 |
+
live=True
|
72 |
+
)
|
73 |
|
74 |
iface.launch()
|