import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from PIL import Image import gradio as gr # ------------------- Model Definition ------------------- class SimpleCNN(nn.Module): def __init__(self, num_classes=1): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(128 * 28 * 28, 512) self.fc2 = nn.Linear(512, num_classes) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) x = x.view(-1, 128 * 28 * 28) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # ------------------- Load Model ------------------- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = SimpleCNN() model.load_state_dict(torch.load("age_prediction_model1.pth", map_location=device)) model.to(device) model.eval() # ------------------- Transform ------------------- transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # ------------------- Prediction Function ------------------- def predict(image): image = transform(image).unsqueeze(0).to(device) with torch.no_grad(): output = model(image).squeeze().item() return f"Predicted Age: {round(output, 2)} years" # ------------------- Gradio Interface ------------------- iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="text", title="Face Age Prediction", description="Upload a face image and get a predicted age") iface.launch()