MoinulwithAI's picture
Update app.py
227e832 verified
raw
history blame
6.25 kB
import gradio as gr
import torch
import os
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import xml.etree.ElementTree as ET
import torch.optim as optim
from torch import nn
# Your model training and evaluation functions (already defined in your previous code)
# Define the custom dataset
class FaceMaskDataset(Dataset):
def __init__(self, images_dir, annotations_dir, transform=None, resize=(800, 800)):
self.images_dir = images_dir
self.annotations_dir = annotations_dir
self.transform = transform
self.resize = resize
self.image_files = os.listdir(images_dir)
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
image_path = os.path.join(self.images_dir, self.image_files[idx])
image = Image.open(image_path).convert("RGB")
image = image.resize(self.resize)
annotation_path = os.path.join(self.annotations_dir, self.image_files[idx].replace(".jpg", ".xml").replace(".png", ".xml"))
if not os.path.exists(annotation_path):
print(f"Warning: Annotation file {annotation_path} does not exist. Skipping image {self.image_files[idx]}.")
return None, None # Return None if annotation is missing
boxes, labels = self.load_annotations(annotation_path)
if boxes is None or labels is None:
return None, None # Skip if annotations are invalid
target = {'boxes': boxes, 'labels': labels}
if self.transform:
image = self.transform(image)
return image, target
def load_annotations(self, annotation_path):
tree = ET.parse(annotation_path)
root = tree.getroot()
boxes = []
labels = []
for obj in root.iter('object'):
label = obj.find('name').text
bndbox = obj.find('bndbox')
xmin = float(bndbox.find('xmin').text)
ymin = float(bndbox.find('ymin').text)
xmax = float(bndbox.find('xmax').text)
ymax = float(bndbox.find('ymax').text)
boxes.append([xmin, ymin, xmax, ymax])
labels.append(1 if label == "mask" else 0) # "mask" = 1, "no_mask" = 0
if len(boxes) == 0 or len(labels) == 0:
return None, None # If no boxes or labels, return None
boxes = torch.as_tensor(boxes, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.int64)
return boxes, labels
# Model Training Loop (referred to from previous code)
def train_model(model, train_loader, val_loader, optimizer, num_epochs=10):
for epoch in range(num_epochs):
# Training loop
running_loss = 0.0
model.train()
for images, targets in train_loader:
if images is None or targets is None:
continue # Skip invalid images/annotations
# Move data to device
images = [image.to(device) for image in images]
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
optimizer.zero_grad()
loss_dict = model(images, targets)
# Calculate total loss
total_loss = sum(loss for loss in loss_dict.values())
total_loss.backward()
optimizer.step()
running_loss += total_loss.item()
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss / len(train_loader)}")
# Evaluate after every epoch
val_loss = evaluate_model(model, val_loader)
print(f"Validation Loss: {val_loss}")
# Validation function
def evaluate_model(model, val_loader):
model.eval()
running_loss = 0.0
with torch.no_grad():
for images, targets in val_loader:
if images is None or targets is None:
continue # Skip invalid data
# Move data to device
images = [image.to(device) for image in images]
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
# Calculate total loss
total_loss = sum(loss for loss in loss_dict.values())
running_loss += total_loss.item()
return running_loss / len(val_loader)
# Function to upload dataset and start training
def train_on_uploaded_data(train_data, val_data):
# Save the uploaded dataset (files)
train_data_path = "train_data.zip"
val_data_path = "val_data.zip"
# Unzip and prepare directories (assuming you upload zip files for simplicity)
with open(train_data.name, 'wb') as f:
f.write(train_data.read())
with open(val_data.name, 'wb') as f:
f.write(val_data.read())
# Extract zip files
os.system(f"unzip {train_data_path} -d ./train/")
os.system(f"unzip {val_data_path} -d ./val/")
# Load datasets
train_dataset = FaceMaskDataset(
images_dir="train/images",
annotations_dir="train/annotations",
transform=transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
)
val_dataset = FaceMaskDataset(
images_dir="val/images",
annotations_dir="val/annotations",
transform=transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
)
# Dataloaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, collate_fn=collate_fn)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, collate_fn=collate_fn)
# Train the model
model = get_model(num_classes=2) # Assuming you have a model function
model.to(device)
optimizer = optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)
# Train the model and return feedback
train_model(model, train_loader, val_loader, optimizer, num_epochs=10)
return "Training completed and model saved."
# Create Gradio Interface
iface = gr.Interface(
fn=train_on_uploaded_data,
inputs=[
gr.File(label="Upload Train Dataset (ZIP)"),
gr.File(label="Upload Validation Dataset (ZIP)")
],
outputs=gr.Textbox(label="Training Status"),
live=True
)
# Launch Gradio interface
iface.launch()