Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,12 @@ from torchvision import transforms
|
|
6 |
from PIL import Image
|
7 |
import xml.etree.ElementTree as ET
|
8 |
import torch.optim as optim
|
9 |
-
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
13 |
class FaceMaskDataset(Dataset):
|
14 |
def __init__(self, images_dir, annotations_dir, transform=None, resize=(800, 800)):
|
15 |
self.images_dir = images_dir
|
@@ -26,18 +28,19 @@ class FaceMaskDataset(Dataset):
|
|
26 |
image = Image.open(image_path).convert("RGB")
|
27 |
image = image.resize(self.resize)
|
28 |
|
29 |
-
annotation_path = os.path.join(
|
30 |
-
|
|
|
|
|
31 |
if not os.path.exists(annotation_path):
|
32 |
-
print(f"Warning: Annotation file {annotation_path}
|
33 |
-
return None, None
|
34 |
-
|
35 |
boxes, labels = self.load_annotations(annotation_path)
|
36 |
if boxes is None or labels is None:
|
37 |
-
return None, None
|
38 |
|
39 |
target = {'boxes': boxes, 'labels': labels}
|
40 |
-
|
41 |
if self.transform:
|
42 |
image = self.transform(image)
|
43 |
|
@@ -57,119 +60,98 @@ class FaceMaskDataset(Dataset):
|
|
57 |
xmax = float(bndbox.find('xmax').text)
|
58 |
ymax = float(bndbox.find('ymax').text)
|
59 |
boxes.append([xmin, ymin, xmax, ymax])
|
60 |
-
labels.append(1 if label == "mask" else 0)
|
61 |
|
62 |
-
if
|
63 |
-
return None, None
|
64 |
|
65 |
-
|
66 |
-
labels = torch.tensor(labels, dtype=torch.int64)
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def train_model(model, train_loader, val_loader, optimizer, num_epochs=10):
|
72 |
for epoch in range(num_epochs):
|
73 |
-
# Training loop
|
74 |
running_loss = 0.0
|
75 |
model.train()
|
76 |
for images, targets in train_loader:
|
77 |
if images is None or targets is None:
|
78 |
-
continue
|
79 |
-
|
80 |
-
# Move data to device
|
81 |
-
images = [image.to(device) for image in images]
|
82 |
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
83 |
-
|
84 |
optimizer.zero_grad()
|
85 |
loss_dict = model(images, targets)
|
86 |
-
|
87 |
-
# Calculate total loss
|
88 |
total_loss = sum(loss for loss in loss_dict.values())
|
89 |
total_loss.backward()
|
90 |
optimizer.step()
|
91 |
-
|
92 |
running_loss += total_loss.item()
|
93 |
|
94 |
-
print(f"Epoch {epoch+1}
|
95 |
-
|
96 |
-
# Evaluate after every epoch
|
97 |
val_loss = evaluate_model(model, val_loader)
|
98 |
-
print(f"Validation Loss: {val_loss}")
|
99 |
|
100 |
-
|
101 |
-
def evaluate_model(model, val_loader):
|
102 |
-
model.eval()
|
103 |
-
running_loss = 0.0
|
104 |
-
with torch.no_grad():
|
105 |
-
for images, targets in val_loader:
|
106 |
-
if images is None or targets is None:
|
107 |
-
continue # Skip invalid data
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
112 |
|
113 |
-
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
|
119 |
-
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
val_data_path = "val_data.zip"
|
126 |
-
|
127 |
-
# Unzip and prepare directories (assuming you upload zip files for simplicity)
|
128 |
-
with open(train_data.name, 'wb') as f:
|
129 |
-
f.write(train_data.read())
|
130 |
-
with open(val_data.name, 'wb') as f:
|
131 |
-
f.write(val_data.read())
|
132 |
-
|
133 |
-
# Extract zip files
|
134 |
-
os.system(f"unzip {train_data_path} -d ./train/")
|
135 |
-
os.system(f"unzip {val_data_path} -d ./val/")
|
136 |
-
|
137 |
-
# Load datasets
|
138 |
-
train_dataset = FaceMaskDataset(
|
139 |
-
images_dir="train/images",
|
140 |
-
annotations_dir="train/annotations",
|
141 |
-
transform=transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
|
142 |
-
)
|
143 |
-
val_dataset = FaceMaskDataset(
|
144 |
-
images_dir="val/images",
|
145 |
-
annotations_dir="val/annotations",
|
146 |
-
transform=transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
|
147 |
-
)
|
148 |
-
|
149 |
-
# Dataloaders
|
150 |
-
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, collate_fn=collate_fn)
|
151 |
-
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, collate_fn=collate_fn)
|
152 |
-
|
153 |
-
# Train the model
|
154 |
-
model = get_model(num_classes=2) # Assuming you have a model function
|
155 |
model.to(device)
|
156 |
optimizer = optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
return "Training completed and model saved."
|
162 |
|
163 |
-
#
|
164 |
iface = gr.Interface(
|
165 |
-
fn=
|
166 |
-
inputs=[
|
167 |
-
|
168 |
-
|
169 |
-
],
|
170 |
-
outputs=gr.Textbox(label="Training Status"),
|
171 |
-
live=True
|
172 |
)
|
173 |
|
174 |
-
# Launch Gradio interface
|
175 |
iface.launch()
|
|
|
6 |
from PIL import Image
|
7 |
import xml.etree.ElementTree as ET
|
8 |
import torch.optim as optim
|
9 |
+
import zipfile
|
10 |
|
11 |
+
# Device config
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# Custom Dataset
|
15 |
class FaceMaskDataset(Dataset):
|
16 |
def __init__(self, images_dir, annotations_dir, transform=None, resize=(800, 800)):
|
17 |
self.images_dir = images_dir
|
|
|
28 |
image = Image.open(image_path).convert("RGB")
|
29 |
image = image.resize(self.resize)
|
30 |
|
31 |
+
annotation_path = os.path.join(
|
32 |
+
self.annotations_dir,
|
33 |
+
self.image_files[idx].replace(".jpg", ".xml").replace(".png", ".xml")
|
34 |
+
)
|
35 |
if not os.path.exists(annotation_path):
|
36 |
+
print(f"Warning: Annotation file {annotation_path} not found.")
|
37 |
+
return None, None
|
38 |
+
|
39 |
boxes, labels = self.load_annotations(annotation_path)
|
40 |
if boxes is None or labels is None:
|
41 |
+
return None, None
|
42 |
|
43 |
target = {'boxes': boxes, 'labels': labels}
|
|
|
44 |
if self.transform:
|
45 |
image = self.transform(image)
|
46 |
|
|
|
60 |
xmax = float(bndbox.find('xmax').text)
|
61 |
ymax = float(bndbox.find('ymax').text)
|
62 |
boxes.append([xmin, ymin, xmax, ymax])
|
63 |
+
labels.append(1 if label == "mask" else 0)
|
64 |
|
65 |
+
if not boxes or not labels:
|
66 |
+
return None, None
|
67 |
|
68 |
+
return torch.as_tensor(boxes, dtype=torch.float32), torch.tensor(labels, dtype=torch.int64)
|
|
|
69 |
|
70 |
+
# Placeholder collate function
|
71 |
+
def collate_fn(batch):
|
72 |
+
batch = list(filter(lambda x: x[0] is not None, batch))
|
73 |
+
images, targets = zip(*batch)
|
74 |
+
return images, targets
|
75 |
|
76 |
+
# Dummy get_model function (replace with real model)
|
77 |
+
def get_model(num_classes):
|
78 |
+
import torchvision
|
79 |
+
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
|
80 |
+
in_features = model.roi_heads.box_predictor.cls_score.in_features
|
81 |
+
model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(in_features, num_classes)
|
82 |
+
return model
|
83 |
+
|
84 |
+
# Validation Function
|
85 |
+
def evaluate_model(model, val_loader):
|
86 |
+
model.eval()
|
87 |
+
running_loss = 0.0
|
88 |
+
with torch.no_grad():
|
89 |
+
for images, targets in val_loader:
|
90 |
+
if images is None or targets is None:
|
91 |
+
continue
|
92 |
+
images = [img.to(device) for img in images]
|
93 |
+
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
94 |
+
loss_dict = model(images, targets)
|
95 |
+
total_loss = sum(loss for loss in loss_dict.values())
|
96 |
+
running_loss += total_loss.item()
|
97 |
+
return running_loss / len(val_loader)
|
98 |
+
|
99 |
+
# Training Function
|
100 |
def train_model(model, train_loader, val_loader, optimizer, num_epochs=10):
|
101 |
for epoch in range(num_epochs):
|
|
|
102 |
running_loss = 0.0
|
103 |
model.train()
|
104 |
for images, targets in train_loader:
|
105 |
if images is None or targets is None:
|
106 |
+
continue
|
107 |
+
images = [img.to(device) for img in images]
|
|
|
|
|
108 |
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
|
|
109 |
optimizer.zero_grad()
|
110 |
loss_dict = model(images, targets)
|
|
|
|
|
111 |
total_loss = sum(loss for loss in loss_dict.values())
|
112 |
total_loss.backward()
|
113 |
optimizer.step()
|
|
|
114 |
running_loss += total_loss.item()
|
115 |
|
116 |
+
print(f"[Epoch {epoch+1}] Train Loss: {running_loss / len(train_loader):.4f}")
|
|
|
|
|
117 |
val_loss = evaluate_model(model, val_loader)
|
118 |
+
print(f"[Epoch {epoch+1}] Validation Loss: {val_loss:.4f}")
|
119 |
|
120 |
+
torch.save(model.state_dict(), "facemask_detector.pth")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
# Main Training Trigger
|
123 |
+
def train_from_files_tab():
|
124 |
+
train_zip_path = "train.zip"
|
125 |
+
val_zip_path = "val.zip"
|
126 |
|
127 |
+
if not os.path.exists(train_zip_path) or not os.path.exists(val_zip_path):
|
128 |
+
return "❌ 'train.zip' or 'val.zip' not found in the Files section."
|
129 |
|
130 |
+
# Extract
|
131 |
+
for zip_path, folder in [(train_zip_path, "train"), (val_zip_path, "val")]:
|
132 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
133 |
+
zip_ref.extractall(folder)
|
134 |
|
135 |
+
transform = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
|
136 |
+
train_dataset = FaceMaskDataset("train/images", "train/annotations", transform=transform)
|
137 |
+
val_dataset = FaceMaskDataset("val/images", "val/annotations", transform=transform)
|
138 |
|
139 |
+
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, collate_fn=collate_fn)
|
140 |
+
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False, collate_fn=collate_fn)
|
141 |
+
|
142 |
+
model = get_model(num_classes=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
model.to(device)
|
144 |
optimizer = optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)
|
145 |
|
146 |
+
train_model(model, train_loader, val_loader, optimizer, num_epochs=5)
|
147 |
+
return "✅ Training complete. Model saved as 'facemask_detector.pth'."
|
|
|
|
|
148 |
|
149 |
+
# Gradio UI
|
150 |
iface = gr.Interface(
|
151 |
+
fn=train_from_files_tab,
|
152 |
+
inputs=[],
|
153 |
+
outputs=gr.Textbox(label="Training Output"),
|
154 |
+
title="Face Mask Detector Trainer (from Files Tab)"
|
|
|
|
|
|
|
155 |
)
|
156 |
|
|
|
157 |
iface.launch()
|