Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,49 @@
|
|
1 |
-
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import joblib
|
4 |
from pytorch_tabnet.tab_model import TabNetClassifier
|
5 |
|
6 |
-
# Load model and
|
7 |
model = TabNetClassifier()
|
8 |
-
model.load_model(
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def predict_personality(*inputs):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
return f"Predicted Personality
|
21 |
|
22 |
-
#
|
23 |
-
inputs = [gr.Slider(1, 5,
|
|
|
24 |
|
25 |
demo = gr.Interface(
|
26 |
fn=predict_personality,
|
27 |
inputs=inputs,
|
28 |
-
outputs=
|
29 |
title="Personality Type Classifier (Introvert vs. Extrovert)",
|
30 |
-
description="
|
31 |
)
|
32 |
-
|
33 |
demo.launch()
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
import joblib
|
4 |
from pytorch_tabnet.tab_model import TabNetClassifier
|
5 |
|
6 |
+
# Load model, scaler, and encoder
|
7 |
model = TabNetClassifier()
|
8 |
+
model.load_model('tabnet_model')
|
9 |
+
|
10 |
+
scaler = joblib.load('D:/Dataset/IPIP-FFM-data-8Nov2018/scaler.save')
|
11 |
+
encoder = joblib.load('D:/Dataset/IPIP-FFM-data-8Nov2018/encoder.save')
|
12 |
|
13 |
+
# Full form trait mapping
|
14 |
+
trait_prefixes = {
|
15 |
+
'Extraversion': 'EXT',
|
16 |
+
'Emotional Stability': 'EST',
|
17 |
+
'Agreeableness': 'AGR',
|
18 |
+
'Conscientiousness': 'CSN',
|
19 |
+
'Openness': 'OPN'
|
20 |
+
}
|
21 |
|
22 |
+
# Create full feature names with full form labels
|
23 |
+
feature_labels = []
|
24 |
+
feature_keys = []
|
25 |
+
for trait, abbrev in trait_prefixes.items():
|
26 |
+
for i in range(10):
|
27 |
+
feature_labels.append(f"{trait} Q{i+1}")
|
28 |
+
feature_keys.append(f"{abbrev}{i+1}")
|
29 |
+
|
30 |
+
# Inference function
|
31 |
def predict_personality(*inputs):
|
32 |
+
input_array = np.array(inputs).reshape(1, -1)
|
33 |
+
scaled_input = scaler.transform(input_array)
|
34 |
+
pred = model.predict(scaled_input)
|
35 |
+
personality = encoder.inverse_transform(pred)[0]
|
36 |
+
return f"Predicted Personality: **{personality}**"
|
37 |
|
38 |
+
# Gradio UI: 50 sliders with full trait names
|
39 |
+
inputs = [gr.Slider(1.0, 5.0, value=3.0, label=label) for label in feature_labels]
|
40 |
+
output = gr.Textbox(label="Prediction")
|
41 |
|
42 |
demo = gr.Interface(
|
43 |
fn=predict_personality,
|
44 |
inputs=inputs,
|
45 |
+
outputs=output,
|
46 |
title="Personality Type Classifier (Introvert vs. Extrovert)",
|
47 |
+
description="Provide scores (1–5) for 50 questions from the IPIP-FFM questionnaire. The model will predict whether the person is an Introvert or an Extrovert."
|
48 |
)
|
|
|
49 |
demo.launch()
|