MoinulwithAI commited on
Commit
48d79b9
·
verified ·
1 Parent(s): 0ee9995

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -5,10 +5,9 @@ from pytorch_tabnet.tab_model import TabNetClassifier
5
 
6
  # Load model, scaler, and encoder
7
  model = TabNetClassifier()
8
- model.load_model('tabnet_model.zip')
9
-
10
- scaler = joblib.load('D:/Dataset/IPIP-FFM-data-8Nov2018/scaler.save')
11
- encoder = joblib.load('D:/Dataset/IPIP-FFM-data-8Nov2018/encoder.save')
12
 
13
  # Full form trait mapping
14
  trait_prefixes = {
@@ -21,11 +20,9 @@ trait_prefixes = {
21
 
22
  # Create full feature names with full form labels
23
  feature_labels = []
24
- feature_keys = []
25
- for trait, abbrev in trait_prefixes.items():
26
  for i in range(10):
27
  feature_labels.append(f"{trait} Q{i+1}")
28
- feature_keys.append(f"{abbrev}{i+1}")
29
 
30
  # Inference function
31
  def predict_personality(*inputs):
@@ -46,4 +43,5 @@ demo = gr.Interface(
46
  title="Personality Type Classifier (Introvert vs. Extrovert)",
47
  description="Provide scores (1–5) for 50 questions from the IPIP-FFM questionnaire. The model will predict whether the person is an Introvert or an Extrovert."
48
  )
 
49
  demo.launch()
 
5
 
6
  # Load model, scaler, and encoder
7
  model = TabNetClassifier()
8
+ model.load_model('tabnet_model.zip') # Must be .zip file
9
+ scaler = joblib.load('scaler.save')
10
+ encoder = joblib.load('encoder.save')
 
11
 
12
  # Full form trait mapping
13
  trait_prefixes = {
 
20
 
21
  # Create full feature names with full form labels
22
  feature_labels = []
23
+ for trait in trait_prefixes:
 
24
  for i in range(10):
25
  feature_labels.append(f"{trait} Q{i+1}")
 
26
 
27
  # Inference function
28
  def predict_personality(*inputs):
 
43
  title="Personality Type Classifier (Introvert vs. Extrovert)",
44
  description="Provide scores (1–5) for 50 questions from the IPIP-FFM questionnaire. The model will predict whether the person is an Introvert or an Extrovert."
45
  )
46
+
47
  demo.launch()