Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
from pytorch_tabnet.tab_model import TabNetClassifier
|
5 |
+
|
6 |
+
# Load model and preprocessing tools
|
7 |
+
model = TabNetClassifier()
|
8 |
+
model.load_model("tabnet_model.zip")
|
9 |
+
scaler = joblib.load("scaler.save")
|
10 |
+
encoder = joblib.load("encoder.save")
|
11 |
+
|
12 |
+
# Features used in the model
|
13 |
+
features = [f"{trait}{i}" for trait in ["EXT", "EST", "AGR", "CSN", "OPN"] for i in range(1, 11)]
|
14 |
+
|
15 |
+
def predict_personality(*inputs):
|
16 |
+
X = np.array(inputs).reshape(1, -1).astype(np.float32)
|
17 |
+
X_scaled = scaler.transform(X)
|
18 |
+
y_pred = model.predict(X_scaled)
|
19 |
+
label = encoder.inverse_transform(y_pred)[0]
|
20 |
+
return f"Predicted Personality Type: {label}"
|
21 |
+
|
22 |
+
# Create Gradio interface
|
23 |
+
inputs = [gr.Slider(1, 5, step=0.1, label=f) for f in features]
|
24 |
+
|
25 |
+
demo = gr.Interface(
|
26 |
+
fn=predict_personality,
|
27 |
+
inputs=inputs,
|
28 |
+
outputs=gr.Text(label="Personality Prediction"),
|
29 |
+
title="Personality Type Classifier (Introvert vs. Extrovert)",
|
30 |
+
description="This model predicts if a person is Introvert or Extrovert based on their IPIP-FFM scores."
|
31 |
+
)
|
32 |
+
|
33 |
+
demo.launch()
|