MoinulwithAI commited on
Commit
727d2ea
·
verified ·
1 Parent(s): 61953b0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +160 -0
app.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.optim as optim
6
+ from torch.utils.data import DataLoader
7
+ from torchvision import datasets, transforms
8
+ from tqdm import tqdm
9
+ import matplotlib.pyplot as plt
10
+ import timm
11
+
12
+ # Data augmentation and normalization
13
+ transform_train = transforms.Compose([
14
+ transforms.RandomResizedCrop(224, scale=(0.8, 1.0)),
15
+ transforms.RandomHorizontalFlip(),
16
+ transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
17
+ transforms.RandomRotation(15),
18
+ transforms.RandomAffine(degrees=15, translate=(0.1, 0.1)),
19
+ transforms.GaussianBlur(kernel_size=3),
20
+ transforms.ToTensor(),
21
+ transforms.Normalize(mean=[0.485, 0.456, 0.406],
22
+ std=[0.229, 0.224, 0.225]),
23
+ ])
24
+
25
+ transform_val = transforms.Compose([
26
+ transforms.Resize(224),
27
+ transforms.CenterCrop(224),
28
+ transforms.ToTensor(),
29
+ transforms.Normalize(mean=[0.485, 0.456, 0.406],
30
+ std=[0.229, 0.224, 0.225]),
31
+ ])
32
+
33
+ # Dataset loading
34
+ train_dir = 'D:\\Dataset\\Potato Leaf Disease Dataset in Uncontrolled Environment'
35
+ full_ds = datasets.ImageFolder(train_dir, transform=transform_train)
36
+ train_size = int(0.8 * len(full_ds))
37
+ val_size = len(full_ds) - train_size
38
+ train_ds, val_ds = torch.utils.data.random_split(full_ds, [train_size, val_size])
39
+ val_ds.dataset.transform = transform_val # Apply validation transforms
40
+
41
+ train_loader = DataLoader(train_ds, batch_size=32, shuffle=True, num_workers=4)
42
+ val_loader = DataLoader(val_ds, batch_size=32, shuffle=False, num_workers=4)
43
+
44
+ # Device
45
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
46
+
47
+ # Model definition with custom classification head (optional improvement)
48
+ model = timm.create_model('mobilenetv3_large_100', pretrained=True)
49
+ in_features = model.classifier.in_features
50
+ model.classifier = nn.Sequential(
51
+ nn.Linear(in_features, 512),
52
+ nn.ReLU(),
53
+ nn.Dropout(0.3),
54
+ nn.Linear(512, len(full_ds.classes))
55
+ )
56
+ model.to(device)
57
+
58
+ # Loss and optimizer
59
+ criterion = nn.CrossEntropyLoss()
60
+ optimizer = optim.Adam(model.parameters(), lr=1e-4)
61
+ scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=3)
62
+
63
+ # MixUp augmentation
64
+ def mixup_data(x, y, alpha=1.0):
65
+ if alpha > 0:
66
+ lam = np.random.beta(alpha, alpha)
67
+ else:
68
+ lam = 1
69
+ batch_size = x.size(0)
70
+ index = torch.randperm(batch_size).to(x.device)
71
+ mixed_x = lam * x + (1 - lam) * x[index, :]
72
+ y_a, y_b = y, y[index]
73
+ return mixed_x, y_a, y_b, lam
74
+
75
+ def mixup_criterion(criterion, pred, y_a, y_b, lam):
76
+ return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
77
+
78
+ # Training function with MixUp
79
+ def train_epoch(model, train_loader, criterion, optimizer):
80
+ model.train()
81
+ running_loss, correct_preds, total_preds = 0.0, 0, 0
82
+ for inputs, labels in tqdm(train_loader, desc="Training Epoch", leave=False):
83
+ inputs, labels = inputs.to(device), labels.to(device)
84
+ inputs, targets_a, targets_b, lam = mixup_data(inputs, labels, alpha=1.0)
85
+
86
+ optimizer.zero_grad()
87
+ outputs = model(inputs)
88
+ loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
89
+ loss.backward()
90
+ optimizer.step()
91
+
92
+ _, preds = torch.max(outputs, 1)
93
+ correct_preds += (lam * preds.eq(targets_a).sum().item()
94
+ + (1 - lam) * preds.eq(targets_b).sum().item())
95
+ total_preds += labels.size(0)
96
+ running_loss += loss.item()
97
+
98
+ return running_loss / len(train_loader), correct_preds / total_preds
99
+
100
+ # Validation function
101
+ def validate_epoch(model, val_loader, criterion):
102
+ model.eval()
103
+ running_loss, correct_preds, total_preds = 0.0, 0, 0
104
+ with torch.no_grad():
105
+ for inputs, labels in tqdm(val_loader, desc="Validating Epoch", leave=False):
106
+ inputs, labels = inputs.to(device), labels.to(device)
107
+ outputs = model(inputs)
108
+ loss = criterion(outputs, labels)
109
+ _, preds = torch.max(outputs, 1)
110
+ correct_preds += (preds == labels).sum().item()
111
+ total_preds += labels.size(0)
112
+ running_loss += loss.item()
113
+ return running_loss / len(val_loader), correct_preds / total_preds
114
+
115
+ # Plotting
116
+ def plot_metrics(train_loss, val_loss, train_acc, val_acc):
117
+ epochs = range(1, len(train_loss) + 1)
118
+ plt.figure(figsize=(12, 5))
119
+ plt.subplot(1, 2, 1)
120
+ plt.plot(epochs, train_loss, label='Training Loss')
121
+ plt.plot(epochs, val_loss, label='Validation Loss')
122
+ plt.xlabel('Epochs')
123
+ plt.ylabel('Loss')
124
+ plt.legend()
125
+ plt.subplot(1, 2, 2)
126
+ plt.plot(epochs, train_acc, label='Training Accuracy')
127
+ plt.plot(epochs, val_acc, label='Validation Accuracy')
128
+ plt.xlabel('Epochs')
129
+ plt.ylabel('Accuracy')
130
+ plt.legend()
131
+ plt.show()
132
+
133
+ # Training loop
134
+ num_epochs = 20
135
+ train_losses, val_losses = [], []
136
+ train_accuracies, val_accuracies = [], []
137
+
138
+ for epoch in range(num_epochs):
139
+ print(f"\nEpoch {epoch+1}/{num_epochs}")
140
+ train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer)
141
+ val_loss, val_acc = validate_epoch(model, val_loader, criterion)
142
+ scheduler.step(val_acc)
143
+
144
+ print(f"Train Loss: {train_loss:.4f}, Accuracy: {train_acc:.4f}")
145
+ print(f"Val Loss: {val_loss:.4f}, Accuracy: {val_acc:.4f}")
146
+
147
+ train_losses.append(train_loss)
148
+ val_losses.append(val_loss)
149
+ train_accuracies.append(train_acc)
150
+ val_accuracies.append(val_acc)
151
+
152
+ plot_metrics(train_losses, val_losses, train_accuracies, val_accuracies)
153
+ best_val_acc = 0.0
154
+ save_path = 'D:\\Dataset\\Potato Leaf Disease Dataset in Uncontrolled Environment\\best_model.pth'
155
+ os.makedirs(os.path.dirname(save_path), exist_ok=True)
156
+
157
+ if val_acc > best_val_acc:
158
+ best_val_acc = val_acc
159
+ torch.save(model.state_dict(), save_path)
160
+ print(f"✅ Best model saved with val_acc: {val_acc:.4f}")