MoinulwithAI commited on
Commit
ebf1ca5
·
verified ·
1 Parent(s): e6fde1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -145
app.py CHANGED
@@ -1,160 +1,51 @@
1
- import os
2
- import numpy as np
3
  import torch
4
  import torch.nn as nn
5
- import torch.optim as optim
6
- from torch.utils.data import DataLoader
7
- from torchvision import datasets, transforms
8
- from tqdm import tqdm
9
- import matplotlib.pyplot as plt
10
  import timm
 
 
 
11
 
12
- # Data augmentation and normalization
13
- transform_train = transforms.Compose([
14
- transforms.RandomResizedCrop(224, scale=(0.8, 1.0)),
15
- transforms.RandomHorizontalFlip(),
16
- transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
17
- transforms.RandomRotation(15),
18
- transforms.RandomAffine(degrees=15, translate=(0.1, 0.1)),
19
- transforms.GaussianBlur(kernel_size=3),
20
- transforms.ToTensor(),
21
- transforms.Normalize(mean=[0.485, 0.456, 0.406],
22
- std=[0.229, 0.224, 0.225]),
23
- ])
24
-
25
- transform_val = transforms.Compose([
26
- transforms.Resize(224),
27
- transforms.CenterCrop(224),
28
- transforms.ToTensor(),
29
- transforms.Normalize(mean=[0.485, 0.456, 0.406],
30
- std=[0.229, 0.224, 0.225]),
31
- ])
32
-
33
- # Dataset loading
34
- train_dir = 'D:\\Dataset\\Potato Leaf Disease Dataset in Uncontrolled Environment'
35
- full_ds = datasets.ImageFolder(train_dir, transform=transform_train)
36
- train_size = int(0.8 * len(full_ds))
37
- val_size = len(full_ds) - train_size
38
- train_ds, val_ds = torch.utils.data.random_split(full_ds, [train_size, val_size])
39
- val_ds.dataset.transform = transform_val # Apply validation transforms
40
 
41
- train_loader = DataLoader(train_ds, batch_size=32, shuffle=True, num_workers=4)
42
- val_loader = DataLoader(val_ds, batch_size=32, shuffle=False, num_workers=4)
43
-
44
- # Device
45
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
46
-
47
- # Model definition with custom classification head (optional improvement)
48
- model = timm.create_model('mobilenetv3_large_100', pretrained=True)
49
- in_features = model.classifier.in_features
50
  model.classifier = nn.Sequential(
51
- nn.Linear(in_features, 512),
52
  nn.ReLU(),
53
  nn.Dropout(0.3),
54
- nn.Linear(512, len(full_ds.classes))
55
  )
 
56
  model.to(device)
 
57
 
58
- # Loss and optimizer
59
- criterion = nn.CrossEntropyLoss()
60
- optimizer = optim.Adam(model.parameters(), lr=1e-4)
61
- scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=3)
62
-
63
- # MixUp augmentation
64
- def mixup_data(x, y, alpha=1.0):
65
- if alpha > 0:
66
- lam = np.random.beta(alpha, alpha)
67
- else:
68
- lam = 1
69
- batch_size = x.size(0)
70
- index = torch.randperm(batch_size).to(x.device)
71
- mixed_x = lam * x + (1 - lam) * x[index, :]
72
- y_a, y_b = y, y[index]
73
- return mixed_x, y_a, y_b, lam
74
-
75
- def mixup_criterion(criterion, pred, y_a, y_b, lam):
76
- return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
77
-
78
- # Training function with MixUp
79
- def train_epoch(model, train_loader, criterion, optimizer):
80
- model.train()
81
- running_loss, correct_preds, total_preds = 0.0, 0, 0
82
- for inputs, labels in tqdm(train_loader, desc="Training Epoch", leave=False):
83
- inputs, labels = inputs.to(device), labels.to(device)
84
- inputs, targets_a, targets_b, lam = mixup_data(inputs, labels, alpha=1.0)
85
-
86
- optimizer.zero_grad()
87
- outputs = model(inputs)
88
- loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
89
- loss.backward()
90
- optimizer.step()
91
-
92
- _, preds = torch.max(outputs, 1)
93
- correct_preds += (lam * preds.eq(targets_a).sum().item()
94
- + (1 - lam) * preds.eq(targets_b).sum().item())
95
- total_preds += labels.size(0)
96
- running_loss += loss.item()
97
-
98
- return running_loss / len(train_loader), correct_preds / total_preds
99
 
100
- # Validation function
101
- def validate_epoch(model, val_loader, criterion):
102
- model.eval()
103
- running_loss, correct_preds, total_preds = 0.0, 0, 0
104
  with torch.no_grad():
105
- for inputs, labels in tqdm(val_loader, desc="Validating Epoch", leave=False):
106
- inputs, labels = inputs.to(device), labels.to(device)
107
- outputs = model(inputs)
108
- loss = criterion(outputs, labels)
109
- _, preds = torch.max(outputs, 1)
110
- correct_preds += (preds == labels).sum().item()
111
- total_preds += labels.size(0)
112
- running_loss += loss.item()
113
- return running_loss / len(val_loader), correct_preds / total_preds
114
-
115
- # Plotting
116
- def plot_metrics(train_loss, val_loss, train_acc, val_acc):
117
- epochs = range(1, len(train_loss) + 1)
118
- plt.figure(figsize=(12, 5))
119
- plt.subplot(1, 2, 1)
120
- plt.plot(epochs, train_loss, label='Training Loss')
121
- plt.plot(epochs, val_loss, label='Validation Loss')
122
- plt.xlabel('Epochs')
123
- plt.ylabel('Loss')
124
- plt.legend()
125
- plt.subplot(1, 2, 2)
126
- plt.plot(epochs, train_acc, label='Training Accuracy')
127
- plt.plot(epochs, val_acc, label='Validation Accuracy')
128
- plt.xlabel('Epochs')
129
- plt.ylabel('Accuracy')
130
- plt.legend()
131
- plt.show()
132
-
133
- # Training loop
134
- num_epochs = 20
135
- train_losses, val_losses = [], []
136
- train_accuracies, val_accuracies = [], []
137
-
138
- for epoch in range(num_epochs):
139
- print(f"\nEpoch {epoch+1}/{num_epochs}")
140
- train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer)
141
- val_loss, val_acc = validate_epoch(model, val_loader, criterion)
142
- scheduler.step(val_acc)
143
-
144
- print(f"Train Loss: {train_loss:.4f}, Accuracy: {train_acc:.4f}")
145
- print(f"Val Loss: {val_loss:.4f}, Accuracy: {val_acc:.4f}")
146
-
147
- train_losses.append(train_loss)
148
- val_losses.append(val_loss)
149
- train_accuracies.append(train_acc)
150
- val_accuracies.append(val_acc)
151
-
152
- plot_metrics(train_losses, val_losses, train_accuracies, val_accuracies)
153
- best_val_acc = 0.0
154
- save_path = 'D:\\Dataset\\Potato Leaf Disease Dataset in Uncontrolled Environment\\best_model.pth'
155
- os.makedirs(os.path.dirname(save_path), exist_ok=True)
156
 
157
- if val_acc > best_val_acc:
158
- best_val_acc = val_acc
159
- torch.save(model.state_dict(), save_path)
160
- print(f"✅ Best model saved with val_acc: {val_acc:.4f}")
 
 
 
1
  import torch
2
  import torch.nn as nn
 
 
 
 
 
3
  import timm
4
+ import gradio as gr
5
+ from torchvision import transforms
6
+ from PIL import Image
7
 
8
+ # Define class labels
9
+ class_names = ['Bacteria', 'Fungi', 'Healthy', 'Nematode', 'Pest', 'Phytopthora', 'Virus']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # Load model
 
 
 
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+ model = timm.create_model('mobilenetv3_large_100', pretrained=False)
 
 
 
14
  model.classifier = nn.Sequential(
15
+ nn.Linear(model.classifier.in_features, 512),
16
  nn.ReLU(),
17
  nn.Dropout(0.3),
18
+ nn.Linear(512, len(class_names))
19
  )
20
+ model.load_state_dict(torch.load('best_model.pth', map_location=device))
21
  model.to(device)
22
+ model.eval()
23
 
24
+ # Transform for input image
25
+ transform = transforms.Compose([
26
+ transforms.Resize(256),
27
+ transforms.CenterCrop(224),
28
+ transforms.ToTensor(),
29
+ transforms.Normalize([0.485, 0.456, 0.406],
30
+ [0.229, 0.224, 0.225])
31
+ ])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ # Inference function
34
+ def predict(image):
35
+ image = transform(image).unsqueeze(0).to(device)
 
36
  with torch.no_grad():
37
+ outputs = model(image)
38
+ _, predicted = torch.max(outputs, 1)
39
+ confidence = torch.softmax(outputs, dim=1)[0][predicted.item()].item()
40
+ return {class_names[predicted.item()]: float(confidence)}
41
+
42
+ # Gradio interface
43
+ interface = gr.Interface(
44
+ fn=predict,
45
+ inputs=gr.Image(type="pil"),
46
+ outputs=gr.Label(num_top_classes=3),
47
+ title="Potato Leaf Disease Classification",
48
+ description="Upload an image of a potato leaf to detect the disease type."
49
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ interface.launch()