import torch import torch.nn as nn import timm import gradio as gr from torchvision import transforms from PIL import Image # Define class labels class_names = ['Bacteria', 'Fungi', 'Healthy', 'Nematode', 'Pest', 'Phytopthora', 'Virus'] # Load model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = timm.create_model('mobilenetv3_large_100', pretrained=False) model.classifier = nn.Sequential( nn.Linear(model.classifier.in_features, 512), nn.ReLU(), nn.Dropout(0.3), nn.Linear(512, len(class_names)) ) model.load_state_dict(torch.load('best_model.pth', map_location=device)) model.to(device) model.eval() # Transform for input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Inference function def predict(image): image = transform(image).unsqueeze(0).to(device) with torch.no_grad(): outputs = model(image) _, predicted = torch.max(outputs, 1) confidence = torch.softmax(outputs, dim=1)[0][predicted.item()].item() return {class_names[predicted.item()]: float(confidence)} # Gradio interface interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), title="Potato Leaf Disease Classification", description="Upload an image of a potato leaf to detect the disease type." ) interface.launch()