File size: 1,901 Bytes
953eab4
 
 
bc1eb69
953eab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.transforms import functional as F
from PIL import Image, ImageDraw, ImageFont
import gradio as gr

# Force CPU
device = torch.device('cpu')

# COCO-style class map
COCO_CLASSES = {
    0: "Background", 
    1: "Stand", 
    2: "Sit", 
    3: "Ruku",
    4: "Sijdah"
}

# Load model
def get_model(num_classes):
    model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
    return model

model = get_model(num_classes=5)
model.load_state_dict(torch.load("Salatfasterrcnn_resnet50_epoch_3.pth", map_location=device))
model.to(device)
model.eval()

# Prediction function
def predict(image):
    image = image.convert("RGB")
    image_tensor = F.to_tensor(image).unsqueeze(0).to(device)

    with torch.no_grad():
        prediction = model(image_tensor)

    draw = ImageDraw.Draw(image)
    boxes = prediction[0]["boxes"].cpu().numpy()
    labels = prediction[0]["labels"].cpu().numpy()
    scores = prediction[0]["scores"].cpu().numpy()

    for box, label, score in zip(boxes, labels, scores):
        if score > 0.5:
            x_min, y_min, x_max, y_max = box
            class_name = COCO_CLASSES.get(label, "Unknown")
            draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
            draw.text((x_min, y_min), f"{class_name} ({score:.2f})", fill="red")

    return image

# Gradio interface
gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),
    outputs=gr.Image(type="pil"),
    title="Salat Posture Detection",
    description="Upload an image to detect salat postures (stand, sit, ruku, sijdah)."
).launch()