Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +492 -0
- requirements.txt +13 -0
- sampling.py +47 -0
app.py
ADDED
|
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import datetime
|
| 3 |
+
import json
|
| 4 |
+
import itertools
|
| 5 |
+
import math
|
| 6 |
+
import os
|
| 7 |
+
import spaces
|
| 8 |
+
import time
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
from einops import rearrange, repeat
|
| 16 |
+
from huggingface_hub import snapshot_download
|
| 17 |
+
from PIL import Image, ImageOps
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
+
from torchvision.transforms import functional as F
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
|
| 22 |
+
import sampling
|
| 23 |
+
from modules.autoencoder import AutoEncoder
|
| 24 |
+
from modules.conditioner import Qwen25VL_7b_Embedder as Qwen2VLEmbedder
|
| 25 |
+
from modules.model_edit import Step1XParams, Step1XEdit
|
| 26 |
+
|
| 27 |
+
print("TORCH_CUDA", torch.cuda.is_available())
|
| 28 |
+
|
| 29 |
+
examples = [
|
| 30 |
+
["examples 2/meme.jpg", "turn into an illustration in studio ghibli style",("examples 2/meme.jpg","examples 2/ghibli_meme.jpg"),],
|
| 31 |
+
["examples 2/celeb_meme.jpg", "replace the gray blazer with a leather jacket",("examples 2/celeb_meme.jpg","examples 2/leather.jpg")],
|
| 32 |
+
["examples 2/cookie.png", "remove the cookie",("examples 2/cookie.png","examples 2/no_cookie.png")],
|
| 33 |
+
["examples 2/poster_orig.jpg", "replace 'lambs' with 'llamas'",("examples 2/poster_orig.jpg","examples 2/poster.jpg")],
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
def generate_examples(init_image, prompt):
|
| 37 |
+
return inference(prompt, init_image, seed=-1, size_level=512)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def load_state_dict(model, ckpt_path, device="cuda", strict=False, assign=True):
|
| 41 |
+
if Path(ckpt_path).suffix == ".safetensors":
|
| 42 |
+
state_dict = load_file(ckpt_path, device)
|
| 43 |
+
else:
|
| 44 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
| 45 |
+
|
| 46 |
+
missing, unexpected = model.load_state_dict(
|
| 47 |
+
state_dict, strict=strict, assign=assign
|
| 48 |
+
)
|
| 49 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
| 50 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
| 51 |
+
print("\n" + "-" * 79 + "\n")
|
| 52 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
| 53 |
+
elif len(missing) > 0:
|
| 54 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
| 55 |
+
elif len(unexpected) > 0:
|
| 56 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
| 57 |
+
return model
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def load_models(
|
| 61 |
+
dit_path=None,
|
| 62 |
+
ae_path=None,
|
| 63 |
+
qwen2vl_model_path=None,
|
| 64 |
+
device="cuda",
|
| 65 |
+
max_length=256,
|
| 66 |
+
dtype=torch.bfloat16,
|
| 67 |
+
):
|
| 68 |
+
qwen2vl_encoder = Qwen2VLEmbedder(
|
| 69 |
+
qwen2vl_model_path,
|
| 70 |
+
device=device,
|
| 71 |
+
max_length=max_length,
|
| 72 |
+
dtype=dtype,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
with torch.device("meta"):
|
| 76 |
+
ae = AutoEncoder(
|
| 77 |
+
resolution=256,
|
| 78 |
+
in_channels=3,
|
| 79 |
+
ch=128,
|
| 80 |
+
out_ch=3,
|
| 81 |
+
ch_mult=[1, 2, 4, 4],
|
| 82 |
+
num_res_blocks=2,
|
| 83 |
+
z_channels=16,
|
| 84 |
+
scale_factor=0.3611,
|
| 85 |
+
shift_factor=0.1159,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
step1x_params = Step1XParams(
|
| 89 |
+
in_channels=64,
|
| 90 |
+
out_channels=64,
|
| 91 |
+
vec_in_dim=768,
|
| 92 |
+
context_in_dim=4096,
|
| 93 |
+
hidden_size=3072,
|
| 94 |
+
mlp_ratio=4.0,
|
| 95 |
+
num_heads=24,
|
| 96 |
+
depth=19,
|
| 97 |
+
depth_single_blocks=38,
|
| 98 |
+
axes_dim=[16, 56, 56],
|
| 99 |
+
theta=10_000,
|
| 100 |
+
qkv_bias=True,
|
| 101 |
+
)
|
| 102 |
+
dit = Step1XEdit(step1x_params)
|
| 103 |
+
|
| 104 |
+
ae = load_state_dict(ae, ae_path)
|
| 105 |
+
dit = load_state_dict(
|
| 106 |
+
dit, dit_path
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
dit = dit.to(device=device, dtype=dtype)
|
| 110 |
+
ae = ae.to(device=device, dtype=torch.float32)
|
| 111 |
+
|
| 112 |
+
return ae, dit, qwen2vl_encoder
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class ImageGenerator:
|
| 116 |
+
def __init__(
|
| 117 |
+
self,
|
| 118 |
+
dit_path=None,
|
| 119 |
+
ae_path=None,
|
| 120 |
+
qwen2vl_model_path=None,
|
| 121 |
+
device="cuda",
|
| 122 |
+
max_length=640,
|
| 123 |
+
dtype=torch.bfloat16,
|
| 124 |
+
) -> None:
|
| 125 |
+
self.device = torch.device(device)
|
| 126 |
+
self.ae, self.dit, self.llm_encoder = load_models(
|
| 127 |
+
dit_path=dit_path,
|
| 128 |
+
ae_path=ae_path,
|
| 129 |
+
qwen2vl_model_path=qwen2vl_model_path,
|
| 130 |
+
max_length=max_length,
|
| 131 |
+
dtype=dtype,
|
| 132 |
+
)
|
| 133 |
+
self.ae = self.ae.to(device=self.device, dtype=torch.float32)
|
| 134 |
+
self.dit = self.dit.to(device=self.device, dtype=dtype)
|
| 135 |
+
self.llm_encoder = self.llm_encoder.to(device=self.device, dtype=dtype)
|
| 136 |
+
|
| 137 |
+
def to_cuda(self):
|
| 138 |
+
self.ae.to(device='cuda', dtype=torch.float32)
|
| 139 |
+
self.dit.to(device='cuda', dtype=torch.bfloat16)
|
| 140 |
+
self.llm_encoder.to(device='cuda', dtype=torch.bfloat16)
|
| 141 |
+
|
| 142 |
+
def prepare(self, prompt, img, ref_image, ref_image_raw):
|
| 143 |
+
bs, _, h, w = img.shape
|
| 144 |
+
bs, _, ref_h, ref_w = ref_image.shape
|
| 145 |
+
|
| 146 |
+
assert h == ref_h and w == ref_w
|
| 147 |
+
|
| 148 |
+
if bs == 1 and not isinstance(prompt, str):
|
| 149 |
+
bs = len(prompt)
|
| 150 |
+
elif bs >= 1 and isinstance(prompt, str):
|
| 151 |
+
prompt = [prompt] * bs
|
| 152 |
+
|
| 153 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
| 154 |
+
ref_img = rearrange(ref_image, "b c (ref_h ph) (ref_w pw) -> b (ref_h ref_w) (c ph pw)", ph=2, pw=2)
|
| 155 |
+
if img.shape[0] == 1 and bs > 1:
|
| 156 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
| 157 |
+
ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs)
|
| 158 |
+
|
| 159 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
| 160 |
+
|
| 161 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
| 162 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
| 163 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
| 164 |
+
|
| 165 |
+
ref_img_ids = torch.zeros(ref_h // 2, ref_w // 2, 3)
|
| 166 |
+
|
| 167 |
+
ref_img_ids[..., 1] = ref_img_ids[..., 1] + torch.arange(ref_h // 2)[:, None]
|
| 168 |
+
ref_img_ids[..., 2] = ref_img_ids[..., 2] + torch.arange(ref_w // 2)[None, :]
|
| 169 |
+
ref_img_ids = repeat(ref_img_ids, "ref_h ref_w c -> b (ref_h ref_w) c", b=bs)
|
| 170 |
+
|
| 171 |
+
if isinstance(prompt, str):
|
| 172 |
+
prompt = [prompt]
|
| 173 |
+
|
| 174 |
+
txt, mask = self.llm_encoder(prompt, ref_image_raw)
|
| 175 |
+
|
| 176 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
| 177 |
+
|
| 178 |
+
img = torch.cat([img, ref_img.to(device=img.device, dtype=img.dtype)], dim=-2)
|
| 179 |
+
img_ids = torch.cat([img_ids, ref_img_ids], dim=-2)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
return {
|
| 183 |
+
"img": img,
|
| 184 |
+
"mask": mask,
|
| 185 |
+
"img_ids": img_ids.to(img.device),
|
| 186 |
+
"llm_embedding": txt.to(img.device),
|
| 187 |
+
"txt_ids": txt_ids.to(img.device),
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
@staticmethod
|
| 191 |
+
def process_diff_norm(diff_norm, k):
|
| 192 |
+
pow_result = torch.pow(diff_norm, k)
|
| 193 |
+
|
| 194 |
+
result = torch.where(
|
| 195 |
+
diff_norm > 1.0,
|
| 196 |
+
pow_result,
|
| 197 |
+
torch.where(diff_norm < 1.0, torch.ones_like(diff_norm), diff_norm),
|
| 198 |
+
)
|
| 199 |
+
return result
|
| 200 |
+
|
| 201 |
+
def denoise(
|
| 202 |
+
self,
|
| 203 |
+
img: torch.Tensor,
|
| 204 |
+
img_ids: torch.Tensor,
|
| 205 |
+
llm_embedding: torch.Tensor,
|
| 206 |
+
txt_ids: torch.Tensor,
|
| 207 |
+
timesteps: list[float],
|
| 208 |
+
cfg_guidance: float = 4.5,
|
| 209 |
+
mask=None,
|
| 210 |
+
show_progress=False,
|
| 211 |
+
timesteps_truncate=1.0,
|
| 212 |
+
):
|
| 213 |
+
if show_progress:
|
| 214 |
+
pbar = tqdm(itertools.pairwise(timesteps), desc='denoising...')
|
| 215 |
+
else:
|
| 216 |
+
pbar = itertools.pairwise(timesteps)
|
| 217 |
+
for t_curr, t_prev in pbar:
|
| 218 |
+
if img.shape[0] == 1 and cfg_guidance != -1:
|
| 219 |
+
img = torch.cat([img, img], dim=0)
|
| 220 |
+
t_vec = torch.full(
|
| 221 |
+
(img.shape[0],), t_curr, dtype=img.dtype, device=img.device
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
txt, vec = self.dit.connector(llm_embedding, t_vec, mask)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
pred = self.dit(
|
| 228 |
+
img=img,
|
| 229 |
+
img_ids=img_ids,
|
| 230 |
+
txt=txt,
|
| 231 |
+
txt_ids=txt_ids,
|
| 232 |
+
y=vec,
|
| 233 |
+
timesteps=t_vec,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
if cfg_guidance != -1:
|
| 237 |
+
cond, uncond = (
|
| 238 |
+
pred[0 : pred.shape[0] // 2, :],
|
| 239 |
+
pred[pred.shape[0] // 2 :, :],
|
| 240 |
+
)
|
| 241 |
+
if t_curr > timesteps_truncate:
|
| 242 |
+
diff = cond - uncond
|
| 243 |
+
diff_norm = torch.norm(diff, dim=(2), keepdim=True)
|
| 244 |
+
pred = uncond + cfg_guidance * (
|
| 245 |
+
cond - uncond
|
| 246 |
+
) / self.process_diff_norm(diff_norm, k=0.4)
|
| 247 |
+
else:
|
| 248 |
+
pred = uncond + cfg_guidance * (cond - uncond)
|
| 249 |
+
tem_img = img[0 : img.shape[0] // 2, :] + (t_prev - t_curr) * pred
|
| 250 |
+
img_input_length = img.shape[1] // 2
|
| 251 |
+
img = torch.cat(
|
| 252 |
+
[
|
| 253 |
+
tem_img[:, :img_input_length],
|
| 254 |
+
img[ : img.shape[0] // 2, img_input_length:],
|
| 255 |
+
], dim=1
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
return img[:, :img.shape[1] // 2]
|
| 259 |
+
|
| 260 |
+
@staticmethod
|
| 261 |
+
def unpack(x: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
| 262 |
+
return rearrange(
|
| 263 |
+
x,
|
| 264 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
| 265 |
+
h=math.ceil(height / 16),
|
| 266 |
+
w=math.ceil(width / 16),
|
| 267 |
+
ph=2,
|
| 268 |
+
pw=2,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
@staticmethod
|
| 272 |
+
def load_image(image):
|
| 273 |
+
from PIL import Image
|
| 274 |
+
|
| 275 |
+
if isinstance(image, np.ndarray):
|
| 276 |
+
image = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0
|
| 277 |
+
image = image.unsqueeze(0)
|
| 278 |
+
return image
|
| 279 |
+
elif isinstance(image, Image.Image):
|
| 280 |
+
image = F.to_tensor(image.convert("RGB"))
|
| 281 |
+
image = image.unsqueeze(0)
|
| 282 |
+
return image
|
| 283 |
+
elif isinstance(image, torch.Tensor):
|
| 284 |
+
return image
|
| 285 |
+
elif isinstance(image, str):
|
| 286 |
+
image = F.to_tensor(Image.open(image).convert("RGB"))
|
| 287 |
+
image = image.unsqueeze(0)
|
| 288 |
+
return image
|
| 289 |
+
else:
|
| 290 |
+
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 291 |
+
|
| 292 |
+
def output_process_image(self, resize_img, image_size):
|
| 293 |
+
res_image = resize_img.resize(image_size)
|
| 294 |
+
return res_image
|
| 295 |
+
|
| 296 |
+
def input_process_image(self, img, img_size=512):
|
| 297 |
+
# 1. ζεΌεΎη
|
| 298 |
+
w, h = img.size
|
| 299 |
+
r = w / h
|
| 300 |
+
|
| 301 |
+
if w > h:
|
| 302 |
+
w_new = math.ceil(math.sqrt(img_size * img_size * r))
|
| 303 |
+
h_new = math.ceil(w_new / r)
|
| 304 |
+
else:
|
| 305 |
+
h_new = math.ceil(math.sqrt(img_size * img_size / r))
|
| 306 |
+
w_new = math.ceil(h_new * r)
|
| 307 |
+
h_new = math.ceil(h_new) // 16 * 16
|
| 308 |
+
w_new = math.ceil(w_new) // 16 * 16
|
| 309 |
+
|
| 310 |
+
img_resized = img.resize((w_new, h_new))
|
| 311 |
+
return img_resized, img.size
|
| 312 |
+
|
| 313 |
+
@torch.inference_mode()
|
| 314 |
+
def generate_image(
|
| 315 |
+
self,
|
| 316 |
+
prompt,
|
| 317 |
+
negative_prompt,
|
| 318 |
+
ref_images,
|
| 319 |
+
num_steps,
|
| 320 |
+
cfg_guidance,
|
| 321 |
+
seed,
|
| 322 |
+
num_samples=1,
|
| 323 |
+
init_image=None,
|
| 324 |
+
image2image_strength=0.0,
|
| 325 |
+
show_progress=False,
|
| 326 |
+
size_level=512,
|
| 327 |
+
):
|
| 328 |
+
assert num_samples == 1, "num_samples > 1 is not supported yet."
|
| 329 |
+
ref_images_raw, img_info = self.input_process_image(ref_images, img_size=size_level)
|
| 330 |
+
|
| 331 |
+
width, height = ref_images_raw.width, ref_images_raw.height
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
ref_images_raw = self.load_image(ref_images_raw)
|
| 335 |
+
ref_images_raw = ref_images_raw.to(self.device)
|
| 336 |
+
# print(f'self.ae, self.dit device: {self.ae.device}, {self.dit.device}')
|
| 337 |
+
ref_images = self.ae.encode(ref_images_raw.to(self.device) * 2 - 1)
|
| 338 |
+
|
| 339 |
+
seed = int(seed)
|
| 340 |
+
seed = torch.Generator(device="cpu").seed() if seed < 0 else seed
|
| 341 |
+
|
| 342 |
+
t0 = time.perf_counter()
|
| 343 |
+
|
| 344 |
+
if init_image is not None:
|
| 345 |
+
init_image = self.load_image(init_image)
|
| 346 |
+
init_image = init_image.to(self.device)
|
| 347 |
+
init_image = torch.nn.functional.interpolate(init_image, (height, width))
|
| 348 |
+
init_image = self.ae.encode(init_image.to() * 2 - 1)
|
| 349 |
+
|
| 350 |
+
x = torch.randn(
|
| 351 |
+
num_samples,
|
| 352 |
+
16,
|
| 353 |
+
height // 8,
|
| 354 |
+
width // 8,
|
| 355 |
+
device=self.device,
|
| 356 |
+
dtype=torch.bfloat16,
|
| 357 |
+
generator=torch.Generator(device=self.device).manual_seed(seed),
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
timesteps = sampling.get_schedule(
|
| 361 |
+
num_steps, x.shape[-1] * x.shape[-2] // 4, shift=True
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
if init_image is not None:
|
| 365 |
+
t_idx = int((1 - image2image_strength) * num_steps)
|
| 366 |
+
t = timesteps[t_idx]
|
| 367 |
+
timesteps = timesteps[t_idx:]
|
| 368 |
+
x = t * x + (1.0 - t) * init_image.to(x.dtype)
|
| 369 |
+
|
| 370 |
+
x = torch.cat([x, x], dim=0)
|
| 371 |
+
ref_images = torch.cat([ref_images, ref_images], dim=0)
|
| 372 |
+
ref_images_raw = torch.cat([ref_images_raw, ref_images_raw], dim=0)
|
| 373 |
+
inputs = self.prepare([prompt, negative_prompt], x, ref_image=ref_images, ref_image_raw=ref_images_raw)
|
| 374 |
+
|
| 375 |
+
x = self.denoise(
|
| 376 |
+
**inputs,
|
| 377 |
+
cfg_guidance=cfg_guidance,
|
| 378 |
+
timesteps=timesteps,
|
| 379 |
+
show_progress=show_progress,
|
| 380 |
+
timesteps_truncate=1.0,
|
| 381 |
+
)
|
| 382 |
+
x = self.unpack(x.float(), height, width)
|
| 383 |
+
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
|
| 384 |
+
x = self.ae.decode(x)
|
| 385 |
+
x = x.clamp(-1, 1)
|
| 386 |
+
x = x.mul(0.5).add(0.5)
|
| 387 |
+
|
| 388 |
+
t1 = time.perf_counter()
|
| 389 |
+
print(f"Done in {t1 - t0:.1f}s.")
|
| 390 |
+
images_list = []
|
| 391 |
+
for img in x.float():
|
| 392 |
+
images_list.append(self.output_process_image(F.to_pil_image(img), img_info))
|
| 393 |
+
return images_list
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
# 樑εδ»εΊIDοΌε¦οΌ"bert-base-uncased"οΌ
|
| 397 |
+
model_repo = "stepfun-ai/Step1X-Edit"
|
| 398 |
+
# ζ¬ε°δΏεθ·―εΎ
|
| 399 |
+
model_path = "./model_weights"
|
| 400 |
+
os.makedirs(model_path, exist_ok=True)
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
# δΈθ½½ζ¨‘εοΌε
ζ¬ζζζδ»ΆοΌ
|
| 404 |
+
snapshot_download(
|
| 405 |
+
repo_id=model_repo,
|
| 406 |
+
local_dir=model_path,
|
| 407 |
+
local_dir_use_symlinks=False # ιΏε
δ½Ώη¨η¬¦ε·ιΎζ₯
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
image_edit = ImageGenerator(
|
| 412 |
+
ae_path=os.path.join(model_path, 'vae.safetensors'),
|
| 413 |
+
dit_path=os.path.join(model_path, "step1x-edit-i1258.safetensors"),
|
| 414 |
+
qwen2vl_model_path='Qwen/Qwen2.5-VL-7B-Instruct',
|
| 415 |
+
max_length=640,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
@spaces.GPU(duration=240)
|
| 421 |
+
def inference(prompt, ref_images, seed, size_level):
|
| 422 |
+
start_time = time.time()
|
| 423 |
+
|
| 424 |
+
if seed == -1:
|
| 425 |
+
import random
|
| 426 |
+
random_seed = random.randint(0, 2**32 - 1)
|
| 427 |
+
else:
|
| 428 |
+
random_seed = seed
|
| 429 |
+
|
| 430 |
+
image_edit.to_cuda()
|
| 431 |
+
|
| 432 |
+
inference_func = image_edit.generate_image
|
| 433 |
+
|
| 434 |
+
image = inference_func(
|
| 435 |
+
prompt,
|
| 436 |
+
negative_prompt="",
|
| 437 |
+
ref_images=ref_images.convert('RGB'),
|
| 438 |
+
num_samples=1,
|
| 439 |
+
num_steps=28,
|
| 440 |
+
cfg_guidance=6.0,
|
| 441 |
+
seed=random_seed,
|
| 442 |
+
show_progress=True,
|
| 443 |
+
size_level=size_level,
|
| 444 |
+
)[0]
|
| 445 |
+
|
| 446 |
+
print(f"Time taken: {time.time() - start_time:.2f} seconds")
|
| 447 |
+
return (ref_images, image), random_seed
|
| 448 |
+
|
| 449 |
+
with gr.Blocks() as demo:
|
| 450 |
+
gr.Markdown(
|
| 451 |
+
"""
|
| 452 |
+
# Step1X-Edit
|
| 453 |
+
"""
|
| 454 |
+
)
|
| 455 |
+
with gr.Row():
|
| 456 |
+
with gr.Column():
|
| 457 |
+
prompt = gr.Textbox(
|
| 458 |
+
label="ηΌθΎζ什 prompt",
|
| 459 |
+
value='Remove the person from the image.',
|
| 460 |
+
)
|
| 461 |
+
init_image = gr.Image(label="Input Image", type='pil')
|
| 462 |
+
|
| 463 |
+
random_seed = gr.Number(label="Random Seed", value=-1, minimum=-1)
|
| 464 |
+
|
| 465 |
+
size_level = gr.Number(label="size level (recommend 512, 768, 1024, min 512)", value=512, minimum=512)
|
| 466 |
+
|
| 467 |
+
generate_btn = gr.Button("Generate")
|
| 468 |
+
|
| 469 |
+
with gr.Column():
|
| 470 |
+
output_image = gr.ImageSlider(label="Generated Image", type="pil", image_mode='RGB')
|
| 471 |
+
output_random_seed = gr.Textbox(label="Used Seed", lines=5)
|
| 472 |
+
from functools import partial
|
| 473 |
+
generate_btn.click(
|
| 474 |
+
fn=inference,
|
| 475 |
+
inputs=[
|
| 476 |
+
prompt,
|
| 477 |
+
init_image,
|
| 478 |
+
random_seed,
|
| 479 |
+
size_level,
|
| 480 |
+
],
|
| 481 |
+
outputs=[output_image, output_random_seed],
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
gr.Examples(
|
| 485 |
+
examples,
|
| 486 |
+
inputs=[init_image, prompt],
|
| 487 |
+
outputs=[output_image, output_random_seed],
|
| 488 |
+
fn=generate_examples,
|
| 489 |
+
cache_examples=True
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
einops
|
| 2 |
+
transformers==4.49.0
|
| 3 |
+
qwen_vl_utils==0.0.10
|
| 4 |
+
safetensors==0.4.5
|
| 5 |
+
pillow==11.1.0
|
| 6 |
+
huggingface_hub
|
| 7 |
+
transformers
|
| 8 |
+
diffusers
|
| 9 |
+
peft
|
| 10 |
+
opencv-python
|
| 11 |
+
sentencepiece
|
| 12 |
+
boto3
|
| 13 |
+
torchvision
|
sampling.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from collections.abc import Callable
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_noise(num_samples: int, height: int, width: int, device: torch.device, dtype: torch.dtype, seed: int):
|
| 9 |
+
return torch.randn(
|
| 10 |
+
num_samples,
|
| 11 |
+
16,
|
| 12 |
+
# allow for packing
|
| 13 |
+
2 * math.ceil(height / 16),
|
| 14 |
+
2 * math.ceil(width / 16),
|
| 15 |
+
device=device,
|
| 16 |
+
dtype=dtype,
|
| 17 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def time_shift(mu: float, sigma: float, t: Tensor):
|
| 22 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
|
| 26 |
+
m = (y2 - y1) / (x2 - x1)
|
| 27 |
+
b = y1 - m * x1
|
| 28 |
+
return lambda x: m * x + b
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_schedule(
|
| 32 |
+
num_steps: int,
|
| 33 |
+
image_seq_len: int,
|
| 34 |
+
base_shift: float = 0.5,
|
| 35 |
+
max_shift: float = 1.15,
|
| 36 |
+
shift: bool = True,
|
| 37 |
+
) -> list[float]:
|
| 38 |
+
# extra step for zero
|
| 39 |
+
timesteps = torch.linspace(1, 0, num_steps + 1)
|
| 40 |
+
|
| 41 |
+
# shifting the schedule to favor high timesteps for higher signal images
|
| 42 |
+
if shift:
|
| 43 |
+
# estimate mu based on linear estimation between two points
|
| 44 |
+
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
| 45 |
+
timesteps = time_shift(mu, 1.0, timesteps)
|
| 46 |
+
|
| 47 |
+
return timesteps.tolist()
|