Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,212 +1,5 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from docx import Document
|
3 |
-
import os
|
4 |
-
from langchain_core.prompts import PromptTemplate
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
-
import torch
|
7 |
-
import time
|
8 |
-
from sentence_transformers import SentenceTransformer
|
9 |
-
from langchain.vectorstores import Chroma
|
10 |
-
from langchain.docstore.document import Document as Document2
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
|
13 |
-
import cohere
|
14 |
-
from langchain_core.prompts import PromptTemplate
|
15 |
-
|
16 |
-
# Load token from environment variable
|
17 |
-
token = os.getenv("HF_TOKEN")
|
18 |
-
|
19 |
-
print("my token is ", token)
|
20 |
-
# Save the token to Hugging Face's system directory
|
21 |
-
|
22 |
-
docs_folder = "./converted_docs"
|
23 |
-
|
24 |
-
|
25 |
-
# Function to load .docx files from Google Drive folder
|
26 |
-
def load_docx_files_from_drive(drive_folder):
|
27 |
-
docx_files = [f for f in os.listdir(drive_folder) if f.endswith(".docx")]
|
28 |
-
documents = []
|
29 |
-
|
30 |
-
for file_name in docx_files:
|
31 |
-
file_path = os.path.join(drive_folder, file_name)
|
32 |
-
doc = Document(file_path)
|
33 |
-
content = "\n".join([p.text for p in doc.paragraphs if p.text.strip()])
|
34 |
-
documents.append(content)
|
35 |
-
|
36 |
-
return documents
|
37 |
-
|
38 |
-
|
39 |
-
# Load .docx files from Google Drive folder
|
40 |
-
documents = load_docx_files_from_drive(docs_folder)
|
41 |
-
|
42 |
-
|
43 |
-
def split_extracted_text_into_chunks(documents):
|
44 |
-
print("Splitting text into chunks")
|
45 |
-
# List to hold all chunks
|
46 |
-
chunks = []
|
47 |
-
|
48 |
-
for doc_text in documents:
|
49 |
-
# Split the document text into lines
|
50 |
-
lines = doc_text.splitlines()
|
51 |
-
|
52 |
-
# Initialize variables for splitting
|
53 |
-
current_chunk = []
|
54 |
-
for line in lines:
|
55 |
-
# Check if the line starts with "File Name:"
|
56 |
-
if line.startswith("File Name:"):
|
57 |
-
# If there's a current chunk, save it before starting a new one
|
58 |
-
if current_chunk:
|
59 |
-
chunks.append("\n".join(current_chunk))
|
60 |
-
current_chunk = [] # Reset the current chunk
|
61 |
-
|
62 |
-
# Add the line to the current chunk
|
63 |
-
current_chunk.append(line)
|
64 |
-
|
65 |
-
# Add the last chunk for the current document
|
66 |
-
if current_chunk:
|
67 |
-
chunks.append("\n".join(current_chunk))
|
68 |
-
|
69 |
-
return chunks
|
70 |
-
|
71 |
-
|
72 |
-
# Split the extracted documents into chunks
|
73 |
-
chunks = split_extracted_text_into_chunks(documents)
|
74 |
-
|
75 |
-
|
76 |
-
def save_chunks_to_file(chunks, output_file_path):
|
77 |
-
print("Saving chunks to file")
|
78 |
-
# Open the file in write mode
|
79 |
-
with open(output_file_path, "w", encoding="utf-8") as file:
|
80 |
-
for i, chunk in enumerate(chunks, start=1):
|
81 |
-
# Write each chunk with a header for easy identification
|
82 |
-
file.write(f"Chunk {i}:\n")
|
83 |
-
file.write(chunk)
|
84 |
-
file.write("\n" + "=" * 50 + "\n")
|
85 |
-
|
86 |
-
|
87 |
-
# Path to save the chunks file
|
88 |
-
output_file_path = "./chunks_output.txt"
|
89 |
-
|
90 |
-
# Split the extracted documents into chunks
|
91 |
-
chunks = split_extracted_text_into_chunks(documents)
|
92 |
-
|
93 |
-
# Save the chunks to the file
|
94 |
-
save_chunks_to_file(chunks, output_file_path)
|
95 |
-
|
96 |
-
|
97 |
-
# Step 1: Load the model through LangChain's wrapper
|
98 |
embedding_model = HuggingFaceEmbeddings(
|
99 |
model_name="Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2"
|
100 |
-
)
|
101 |
-
print("#0")
|
102 |
-
|
103 |
-
# Step 2: Embed the chunks (now simplified)
|
104 |
-
def embed_chunks(chunks):
|
105 |
-
print("Embedding the chunks")
|
106 |
-
return [
|
107 |
-
{"chunk": chunk, "embedding": embedding_model.embed_query(chunk)}
|
108 |
-
for chunk in chunks
|
109 |
-
]
|
110 |
-
|
111 |
-
|
112 |
-
embeddings = embed_chunks(chunks)
|
113 |
-
print("#1")
|
114 |
-
|
115 |
-
# Step 3: Prepare documents (unchanged)
|
116 |
-
def prepare_documents_for_chroma(embeddings):
|
117 |
-
print("Preparing documents for chroma")
|
118 |
-
return [
|
119 |
-
Document2(page_content=entry["chunk"], metadata={"chunk_index": i})
|
120 |
-
for i, entry in enumerate(embeddings, start=1)
|
121 |
-
]
|
122 |
-
|
123 |
-
print("#2")
|
124 |
-
documents = prepare_documents_for_chroma(embeddings)
|
125 |
-
print("Creating the vectore store")
|
126 |
-
# Step 4: Create Chroma store (fixed)
|
127 |
-
vectorstore = Chroma.from_documents(
|
128 |
-
documents=documents,
|
129 |
-
embedding=embedding_model, # Proper embedding object
|
130 |
-
persist_directory="./chroma_db", # Optional persistence
|
131 |
-
)
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
class RAGPipeline:
|
137 |
-
def __init__(self, vectorstore, api_key, model_name="c4ai-aya-expanse-8b", k=3):
|
138 |
-
print("Initializing RAG Pipeline")
|
139 |
-
self.vectorstore = vectorstore
|
140 |
-
self.model_name = model_name
|
141 |
-
self.k = k
|
142 |
-
self.api_key = api_key
|
143 |
-
self.client = cohere.Client(api_key) # Initialize the Cohere client
|
144 |
-
self.retriever = self.vectorstore.as_retriever(
|
145 |
-
search_type="mmr", search_kwargs={"k": 3}
|
146 |
-
)
|
147 |
-
self.prompt_template = PromptTemplate.from_template(self._get_template())
|
148 |
-
|
149 |
-
def _get_template(self):
|
150 |
-
return """<s>[INST] <<SYS>>
|
151 |
-
أنت مساعد مفيد يقدم إجابات باللغة العربية بناءً على السياق المقدم.
|
152 |
-
- أجب فقط باللغة العربية
|
153 |
-
- إذا لم تجد إجابة في السياق، قل أنك لا تعرف
|
154 |
-
- كن دقيقاً وواضحاً في إجا��اتك
|
155 |
-
-جاوب من السياق حصريا
|
156 |
-
<</SYS>>
|
157 |
-
|
158 |
-
السياق: {context}
|
159 |
-
|
160 |
-
السؤال: {question}
|
161 |
-
الإجابة: [/INST]\
|
162 |
-
|
163 |
-
"""
|
164 |
-
|
165 |
-
def generate_response(self, question):
|
166 |
-
retrieved_docs = self._retrieve_documents(question)
|
167 |
-
prompt = self._create_prompt(retrieved_docs, question)
|
168 |
-
response = self._generate_response_cohere(prompt)
|
169 |
-
return response
|
170 |
-
|
171 |
-
def _retrieve_documents(self, question):
|
172 |
-
retrieved_docs = self.retriever.invoke(question)
|
173 |
-
# print("\n=== المستندات المسترجعة ===")
|
174 |
-
# for i, doc in enumerate(retrieved_docs):
|
175 |
-
# print(f"المستند {i+1}: {doc.page_content}")
|
176 |
-
# print("==========================\n")
|
177 |
-
|
178 |
-
# دمج النصوص المسترجعة في سياق واحد
|
179 |
-
return " ".join([doc.page_content for doc in retrieved_docs])
|
180 |
-
|
181 |
-
def _create_prompt(self, docs, question):
|
182 |
-
return self.prompt_template.format(context=docs, question=question)
|
183 |
-
|
184 |
-
def _generate_response_cohere(self, prompt):
|
185 |
-
# Call Cohere's generate API
|
186 |
-
response = self.client.generate(
|
187 |
-
model=self.model_name,
|
188 |
-
prompt=prompt,
|
189 |
-
max_tokens=2000, # Adjust token limit based on requirements
|
190 |
-
temperature=0.3, # Control creativity
|
191 |
-
stop_sequences=None,
|
192 |
-
)
|
193 |
-
|
194 |
-
if response.generations:
|
195 |
-
return response.generations[0].text.strip()
|
196 |
-
else:
|
197 |
-
raise Exception("No response generated by Cohere API.")
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
st.title("Simple Text Generator")
|
202 |
-
api_key = os.getenv("API_KEY")
|
203 |
-
s = api_key[:5]
|
204 |
-
print("KEY: ", s)
|
205 |
-
rag_pipeline = RAGPipeline(vectorstore=vectorstore, api_key=api_key)
|
206 |
-
print("Enter your question Here: ")
|
207 |
-
question = st.text_input("أدخل سؤالك هنا")
|
208 |
-
if st.button("Generate Answer"):
|
209 |
-
response = rag_pipeline.generate_response(question)
|
210 |
-
st.write(response)
|
211 |
-
print("Question: ", question)
|
212 |
-
print("Response: ", response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
embedding_model = HuggingFaceEmbeddings(
|
4 |
model_name="Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2"
|
5 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|