Spaces:
Running
Running
default models
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# pip install -U gradio transformers pillow matplotlib
|
2 |
-
|
3 |
import io
|
4 |
from typing import Optional
|
5 |
|
@@ -9,6 +7,20 @@ from PIL import Image
|
|
9 |
|
10 |
from transformers.utils.processor_visualizer_utils import ImageVisualizer
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def _fig_to_pil(fig) -> Image.Image:
|
14 |
buf = io.BytesIO()
|
@@ -16,16 +28,13 @@ def _fig_to_pil(fig) -> Image.Image:
|
|
16 |
buf.seek(0)
|
17 |
return Image.open(buf).convert("RGB")
|
18 |
|
19 |
-
|
20 |
def _run(model_id: str, image: Optional[Image.Image], use_sample: bool, add_grid: bool):
|
21 |
viz = ImageVisualizer(model_id)
|
22 |
|
23 |
-
# Capture all matplotlib figures the visualizer produces without changing the utility.
|
24 |
captured = []
|
25 |
orig_show = plt.show
|
26 |
|
27 |
def _capture_show(*_, **__):
|
28 |
-
# collect the current figure then do not actually display
|
29 |
fig = plt.gcf()
|
30 |
captured.append(fig)
|
31 |
|
@@ -35,32 +44,40 @@ def _run(model_id: str, image: Optional[Image.Image], use_sample: bool, add_grid
|
|
35 |
finally:
|
36 |
plt.show = orig_show
|
37 |
|
38 |
-
# Convert figures to PIL for Gradio
|
39 |
imgs = [_fig_to_pil(fig) for fig in captured] if captured else []
|
40 |
prompt_preview = viz.default_message(full_output=False)
|
41 |
return imgs, prompt_preview
|
42 |
|
43 |
|
44 |
with gr.Blocks(title="Transformers Processor Visualizer") as demo:
|
45 |
-
gr.Markdown("Switch models and see what the processor
|
46 |
|
47 |
with gr.Row():
|
48 |
-
model_id = gr.
|
49 |
label="Model repo_id",
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
)
|
53 |
add_grid = gr.Checkbox(label="Show patch grid", value=True)
|
54 |
use_sample = gr.Checkbox(label="Use HF logo sample", value=True)
|
55 |
|
56 |
-
image = gr.Image(label="
|
|
|
|
|
|
|
57 |
|
|
|
58 |
run_btn = gr.Button("Render")
|
59 |
|
60 |
gallery = gr.Gallery(label="Processor output")
|
61 |
prompt = gr.Textbox(label="Compact chat template preview")
|
62 |
-
|
63 |
run_btn.click(_run, inputs=[model_id, image, use_sample, add_grid], outputs=[gallery, prompt])
|
64 |
|
|
|
|
|
|
|
65 |
if __name__ == "__main__":
|
66 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import io
|
2 |
from typing import Optional
|
3 |
|
|
|
7 |
|
8 |
from transformers.utils.processor_visualizer_utils import ImageVisualizer
|
9 |
|
10 |
+
MODELS = [
|
11 |
+
"openai/clip-vit-base-patch32",
|
12 |
+
"HuggingFaceM4/Idefics3-8B-Llama3",
|
13 |
+
"llava-hf/llava-1.5-7b-hf",
|
14 |
+
"OpenGVLab/InternVL2-2B",
|
15 |
+
"OpenGVLab/InternVL3-8B-hf",
|
16 |
+
"Salesforce/blip-image-captioning-base",
|
17 |
+
"Salesforce/blip2-flan-t5-xl",
|
18 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
19 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
20 |
+
"meta-llama/Llama-3.2-11B-Vision",
|
21 |
+
"microsoft/Florence-2-base",
|
22 |
+
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K",
|
23 |
+
]
|
24 |
|
25 |
def _fig_to_pil(fig) -> Image.Image:
|
26 |
buf = io.BytesIO()
|
|
|
28 |
buf.seek(0)
|
29 |
return Image.open(buf).convert("RGB")
|
30 |
|
|
|
31 |
def _run(model_id: str, image: Optional[Image.Image], use_sample: bool, add_grid: bool):
|
32 |
viz = ImageVisualizer(model_id)
|
33 |
|
|
|
34 |
captured = []
|
35 |
orig_show = plt.show
|
36 |
|
37 |
def _capture_show(*_, **__):
|
|
|
38 |
fig = plt.gcf()
|
39 |
captured.append(fig)
|
40 |
|
|
|
44 |
finally:
|
45 |
plt.show = orig_show
|
46 |
|
|
|
47 |
imgs = [_fig_to_pil(fig) for fig in captured] if captured else []
|
48 |
prompt_preview = viz.default_message(full_output=False)
|
49 |
return imgs, prompt_preview
|
50 |
|
51 |
|
52 |
with gr.Blocks(title="Transformers Processor Visualizer") as demo:
|
53 |
+
gr.Markdown("Switch models and see what the processor feeds them (uses the existing `ImageVisualizer`).")
|
54 |
|
55 |
with gr.Row():
|
56 |
+
model_id = gr.Dropdown(
|
57 |
label="Model repo_id",
|
58 |
+
choices=MODELS,
|
59 |
+
value=MODELS[0],
|
60 |
+
allow_custom_value=True,
|
61 |
+
filterable=True,
|
62 |
)
|
63 |
add_grid = gr.Checkbox(label="Show patch grid", value=True)
|
64 |
use_sample = gr.Checkbox(label="Use HF logo sample", value=True)
|
65 |
|
66 |
+
image = gr.Image(label="Upload custom image", type="pil", height=140, width=140, sources=["upload"])
|
67 |
+
|
68 |
+
def _on_image_change(img):
|
69 |
+
return False # uncheck the sample toggle when a custom image is set
|
70 |
|
71 |
+
image.change(_on_image_change, inputs=image, outputs=use_sample)
|
72 |
run_btn = gr.Button("Render")
|
73 |
|
74 |
gallery = gr.Gallery(label="Processor output")
|
75 |
prompt = gr.Textbox(label="Compact chat template preview")
|
76 |
+
# Render on demand
|
77 |
run_btn.click(_run, inputs=[model_id, image, use_sample, add_grid], outputs=[gallery, prompt])
|
78 |
|
79 |
+
# Also render once on load with defaults so there is an example before clicking
|
80 |
+
demo.load(_run, inputs=[model_id, image, use_sample, add_grid], outputs=[gallery, prompt])
|
81 |
+
|
82 |
if __name__ == "__main__":
|
83 |
+
demo.launch()
|