Spaces:
Sleeping
Sleeping
| import os, sys, glob | |
| import numpy as np | |
| from collections import OrderedDict | |
| from decord import VideoReader, cpu | |
| import cv2 | |
| import torch | |
| import torchvision | |
| sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) | |
| from lvdm.models.samplers.ddim import DDIMSampler | |
| from lvdm.models.samplers.ddim_mp import DDIMSampler as DDIMSampler_mp | |
| def get_views(video_length, window_size=16, stride=4): | |
| num_blocks_time = (video_length - window_size) // stride + 1 | |
| views = [] | |
| for i in range(num_blocks_time): | |
| t_start = int(i * stride) | |
| t_end = t_start + window_size | |
| views.append((t_start,t_end)) | |
| return views | |
| def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\ | |
| cfg_scale=1.0, temporal_cfg_scale=None, **kwargs): | |
| ddim_sampler = DDIMSampler(model) | |
| uncond_type = model.uncond_type | |
| batch_size = noise_shape[0] | |
| ## construct unconditional guidance | |
| if cfg_scale != 1.0: | |
| if uncond_type == "empty_seq": | |
| prompts = batch_size * [""] | |
| #prompts = N * T * [""] ## if is_imgbatch=True | |
| uc_emb = model.get_learned_conditioning(prompts) | |
| elif uncond_type == "zero_embed": | |
| c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond | |
| uc_emb = torch.zeros_like(c_emb) | |
| ## process image embedding token | |
| if hasattr(model, 'embedder'): | |
| uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device) | |
| ## img: b c h w >> b l c | |
| uc_img = model.get_image_embeds(uc_img) | |
| uc_emb = torch.cat([uc_emb, uc_img], dim=1) | |
| if isinstance(cond, dict): | |
| uc = {key:cond[key] for key in cond.keys()} | |
| uc.update({'c_crossattn': [uc_emb]}) | |
| else: | |
| uc = uc_emb | |
| else: | |
| uc = None | |
| x_T = None | |
| batch_variants = [] | |
| #batch_variants1, batch_variants2 = [], [] | |
| for _ in range(n_samples): | |
| if ddim_sampler is not None: | |
| kwargs.update({"clean_cond": True}) | |
| samples, _ = ddim_sampler.sample(S=ddim_steps, | |
| conditioning=cond, | |
| batch_size=noise_shape[0], | |
| shape=noise_shape[1:], | |
| verbose=False, | |
| unconditional_guidance_scale=cfg_scale, | |
| unconditional_conditioning=uc, | |
| eta=ddim_eta, | |
| temporal_length=noise_shape[2], | |
| conditional_guidance_scale_temporal=temporal_cfg_scale, | |
| x_T=x_T, | |
| **kwargs | |
| ) | |
| ## reconstruct from latent to pixel space | |
| batch_images = model.decode_first_stage_2DAE(samples) | |
| batch_variants.append(batch_images) | |
| ## batch, <samples>, c, t, h, w | |
| batch_variants = torch.stack(batch_variants, dim=1) | |
| return batch_variants | |
| def batch_ddim_sampling_freenoise(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\ | |
| cfg_scale=1.0, temporal_cfg_scale=None, args=None, x_T_total=None, **kwargs): | |
| ddim_sampler = DDIMSampler(model) | |
| uncond_type = model.uncond_type | |
| batch_size = noise_shape[0] | |
| ## construct unconditional guidance | |
| if cfg_scale != 1.0: | |
| if uncond_type == "empty_seq": | |
| prompts = batch_size * [""] | |
| #prompts = N * T * [""] ## if is_imgbatch=True | |
| uc_emb = model.get_learned_conditioning(prompts) | |
| elif uncond_type == "zero_embed": | |
| c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond | |
| uc_emb = torch.zeros_like(c_emb) | |
| ## process image embedding token | |
| if hasattr(model, 'embedder'): | |
| uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device) | |
| ## img: b c h w >> b l c | |
| uc_img = model.get_image_embeds(uc_img) | |
| uc_emb = torch.cat([uc_emb, uc_img], dim=1) | |
| if isinstance(cond, dict): | |
| uc = {key:cond[key] for key in cond.keys()} | |
| uc.update({'c_crossattn': [uc_emb]}) | |
| else: | |
| uc = uc_emb | |
| else: | |
| uc = None | |
| views = get_views(args.frames, args.window_size, args.window_stride) | |
| batch_variants = [] | |
| #batch_variants1, batch_variants2 = [], [] | |
| for _ in range(n_samples): | |
| x_T = x_T_total[_] | |
| if ddim_sampler is not None: | |
| kwargs.update({"clean_cond": True}) | |
| samples, _ = ddim_sampler.sample(S=ddim_steps, | |
| conditioning=cond, | |
| batch_size=noise_shape[0], | |
| shape=noise_shape[1:], | |
| verbose=False, | |
| unconditional_guidance_scale=cfg_scale, | |
| unconditional_conditioning=uc, | |
| eta=ddim_eta, | |
| temporal_length=noise_shape[2], | |
| conditional_guidance_scale_temporal=temporal_cfg_scale, | |
| x_T=x_T, | |
| context_next=views, | |
| **kwargs | |
| ) | |
| ## reconstruct from latent to pixel space | |
| batch_images = model.decode_first_stage_2DAE(samples) | |
| batch_variants.append(batch_images) | |
| ## batch, <samples>, c, t, h, w | |
| batch_variants = torch.stack(batch_variants, dim=1) | |
| return batch_variants | |
| def batch_ddim_sampling_freenoise_mp(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\ | |
| cfg_scale=1.0, temporal_cfg_scale=None, args=None, x_T_total=None, **kwargs): | |
| ddim_sampler = DDIMSampler_mp(model) | |
| uncond_type = model.uncond_type | |
| batch_size = noise_shape[0] | |
| ## construct unconditional guidance | |
| if cfg_scale != 1.0: | |
| if uncond_type == "empty_seq": | |
| prompts = batch_size * [""] | |
| #prompts = N * T * [""] ## if is_imgbatch=True | |
| uc_emb = model.get_learned_conditioning(prompts) | |
| elif uncond_type == "zero_embed": | |
| c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond | |
| uc_emb = torch.zeros_like(c_emb) | |
| ## process image embedding token | |
| if hasattr(model, 'embedder'): | |
| uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device) | |
| ## img: b c h w >> b l c | |
| uc_img = model.get_image_embeds(uc_img) | |
| uc_emb = torch.cat([uc_emb, uc_img], dim=1) | |
| if isinstance(cond, dict): | |
| uc = {key:cond[key] for key in cond.keys()} | |
| uc.update({'c_crossattn': [uc_emb]}) | |
| else: | |
| uc = uc_emb | |
| else: | |
| uc = None | |
| views = get_views(args.frames, args.window_size, args.window_stride) | |
| conditioning = cond['c_crossattn'][0] | |
| len1 = int(args.frames * 3 // 8) | |
| len2 = args.frames - len1 * 2 | |
| cond_diff1 = (conditioning[[1]] - conditioning[[0]]) / (len2 - 1) | |
| cond_list1 = [] | |
| for i in range(len2): | |
| cond_list1.append((conditioning[[0]] + cond_diff1 * i).unsqueeze(0)) | |
| cond1 = torch.cat([conditioning[[0]].unsqueeze(0).repeat(1, len1, 1, 1), torch.cat(cond_list1, 1), conditioning[[1]].unsqueeze(0).repeat(1, len1, 1, 1)], 1) | |
| cond2 = torch.cat([conditioning[[1]].unsqueeze(0).repeat(1, args.frames, 1, 1)], 1) | |
| cond_all = torch.cat([cond1, cond2], 0) | |
| cond['c_crossattn'] = [cond_all] | |
| batch_variants = [] | |
| #batch_variants1, batch_variants2 = [], [] | |
| for _ in range(n_samples): | |
| x_T = x_T_total[_] | |
| if ddim_sampler is not None: | |
| kwargs.update({"clean_cond": True}) | |
| samples, _ = ddim_sampler.sample(S=ddim_steps, | |
| conditioning=cond, | |
| batch_size=noise_shape[0], | |
| shape=noise_shape[1:], | |
| verbose=False, | |
| unconditional_guidance_scale=cfg_scale, | |
| unconditional_conditioning=uc, | |
| eta=ddim_eta, | |
| temporal_length=noise_shape[2], | |
| conditional_guidance_scale_temporal=temporal_cfg_scale, | |
| x_T=x_T, | |
| context_next=views, | |
| **kwargs | |
| ) | |
| ## reconstruct from latent to pixel space | |
| batch_images = model.decode_first_stage_2DAE(samples) | |
| batch_variants.append(batch_images) | |
| ## batch, <samples>, c, t, h, w | |
| batch_variants = torch.stack(batch_variants, dim=1) | |
| return batch_variants | |
| def get_filelist(data_dir, ext='*'): | |
| file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext)) | |
| file_list.sort() | |
| return file_list | |
| def get_dirlist(path): | |
| list = [] | |
| if (os.path.exists(path)): | |
| files = os.listdir(path) | |
| for file in files: | |
| m = os.path.join(path,file) | |
| if (os.path.isdir(m)): | |
| list.append(m) | |
| list.sort() | |
| return list | |
| def load_model_checkpoint(model, ckpt): | |
| def load_checkpoint(model, ckpt, full_strict): | |
| state_dict = torch.load(ckpt, map_location="cpu") | |
| try: | |
| ## deepspeed | |
| new_pl_sd = OrderedDict() | |
| for key in state_dict['module'].keys(): | |
| new_pl_sd[key[16:]]=state_dict['module'][key] | |
| model.load_state_dict(new_pl_sd, strict=full_strict) | |
| except: | |
| if "state_dict" in list(state_dict.keys()): | |
| state_dict = state_dict["state_dict"] | |
| model.load_state_dict(state_dict, strict=full_strict) | |
| return model | |
| load_checkpoint(model, ckpt, full_strict=True) | |
| print('>>> model checkpoint loaded.') | |
| return model | |
| def load_prompts(prompt_file): | |
| f = open(prompt_file, 'r') | |
| prompt_list = [] | |
| for idx, line in enumerate(f.readlines()): | |
| l = line.strip() | |
| if len(l) != 0: | |
| prompt_list.append(l) | |
| f.close() | |
| return prompt_list | |
| def load_prompts_mp(prompt_file): | |
| f = open(prompt_file, 'r') | |
| prompt_list = [] | |
| for idx, line in enumerate(f.readlines()): | |
| l = [] | |
| line = line.strip() | |
| prompts = line.split(';') | |
| for prompt in prompts: | |
| prompt = prompt.strip() | |
| if len(prompt) != 0: | |
| l.append(prompt) | |
| if len(l) != 0: | |
| prompt_list.append(l) | |
| f.close() | |
| print(prompt_list) | |
| return prompt_list | |
| def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16): | |
| ''' | |
| Notice about some special cases: | |
| 1. video_frames=-1 means to take all the frames (with fs=1) | |
| 2. when the total video frames is less than required, padding strategy will be used (repreated last frame) | |
| ''' | |
| fps_list = [] | |
| batch_tensor = [] | |
| assert frame_stride > 0, "valid frame stride should be a positive integer!" | |
| for filepath in filepath_list: | |
| padding_num = 0 | |
| vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0]) | |
| fps = vidreader.get_avg_fps() | |
| total_frames = len(vidreader) | |
| max_valid_frames = (total_frames-1) // frame_stride + 1 | |
| if video_frames < 0: | |
| ## all frames are collected: fs=1 is a must | |
| required_frames = total_frames | |
| frame_stride = 1 | |
| else: | |
| required_frames = video_frames | |
| query_frames = min(required_frames, max_valid_frames) | |
| frame_indices = [frame_stride*i for i in range(query_frames)] | |
| ## [t,h,w,c] -> [c,t,h,w] | |
| frames = vidreader.get_batch(frame_indices) | |
| frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() | |
| frame_tensor = (frame_tensor / 255. - 0.5) * 2 | |
| if max_valid_frames < required_frames: | |
| padding_num = required_frames - max_valid_frames | |
| frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1) | |
| print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.') | |
| batch_tensor.append(frame_tensor) | |
| sample_fps = int(fps/frame_stride) | |
| fps_list.append(sample_fps) | |
| return torch.stack(batch_tensor, dim=0) | |
| from PIL import Image | |
| def load_image_batch(filepath_list, image_size=(256,256)): | |
| batch_tensor = [] | |
| for filepath in filepath_list: | |
| _, filename = os.path.split(filepath) | |
| _, ext = os.path.splitext(filename) | |
| if ext == '.mp4': | |
| vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0]) | |
| frame = vidreader.get_batch([0]) | |
| img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float() | |
| elif ext == '.png' or ext == '.jpg': | |
| img = Image.open(filepath).convert("RGB") | |
| rgb_img = np.array(img, np.float32) | |
| #bgr_img = cv2.imread(filepath, cv2.IMREAD_COLOR) | |
| #bgr_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) | |
| rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR) | |
| img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float() | |
| else: | |
| print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]') | |
| raise NotImplementedError | |
| img_tensor = (img_tensor / 255. - 0.5) * 2 | |
| batch_tensor.append(img_tensor) | |
| return torch.stack(batch_tensor, dim=0) | |
| def save_videos(batch_tensors, savedir, filenames, fps=10): | |
| # b,samples,c,t,h,w | |
| n_samples = batch_tensors.shape[1] | |
| for idx, vid_tensor in enumerate(batch_tensors): | |
| video = vid_tensor.detach().cpu() | |
| video = torch.clamp(video.float(), -1., 1.) | |
| video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
| frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w] | |
| grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
| grid = (grid + 1.0) / 2.0 | |
| grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
| savepath = os.path.join(savedir, f"{filenames[idx]}.mp4") | |
| torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |