Spaces:
Sleeping
Sleeping
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelWithLMHead | |
| import torch | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| else: | |
| device = "cpu" | |
| tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases") | |
| model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device) | |
| input_query=st.text_input("Enter the Blog Title") | |
| query = "<|startoftext|> " +"Create a blog about "+ input_query + " ~~" | |
| input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device) | |
| sample_outputs = model.generate(input_ids, | |
| do_sample=True, | |
| num_beams=1, | |
| max_length=2560, | |
| temperature=0.9, | |
| top_k = 30, | |
| num_return_sequences=1) | |
| r = tokenizer.decode(sample_outputs[0], skip_special_tokens=True).split('||')[0] | |
| r = r.split(' ~~ ')[1] | |
| st.write(r) | |