File size: 28,530 Bytes
7a6c881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#!/usr/bin/env python3
"""
Tranception Design App - Hugging Face Spaces Version (Zero GPU Fixed)
"""
import os
import sys
import torch
import transformers
from transformers import PreTrainedTokenizerFast
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
from huggingface_hub import hf_hub_download
import shutil
import uuid
import gc
import time
import datetime

# Simplified Zero GPU handling
try:
    import spaces
    SPACES_AVAILABLE = True
    print("Zero GPU support detected")
except ImportError:
    SPACES_AVAILABLE = False
    print("Running without Zero GPU support")

# Add current directory to path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

# Check if we need to download and extract the tranception module
if not os.path.exists("tranception"):
    print("Downloading Tranception repository...")
    try:
        # Clone the repository structure
        result = os.system("git clone https://github.com/OATML-Markslab/Tranception.git temp_tranception")
        if result != 0:
            raise Exception("Failed to clone Tranception repository")
        # Move the tranception module to current directory
        shutil.move("temp_tranception/tranception", "tranception")
        # Clean up
        shutil.rmtree("temp_tranception")
    except Exception as e:
        print(f"Error setting up Tranception: {e}")
        if os.path.exists("temp_tranception"):
            shutil.rmtree("temp_tranception")
        raise

import tranception
from tranception import config, model_pytorch

# Download model checkpoints if not present
def download_model_from_hf(model_name):
    """Download model from Hugging Face Hub if not present locally"""
    model_path = f"./{model_name}"
    if not os.path.exists(model_path):
        print(f"Loading {model_name} model from Hugging Face Hub...")
        # All models are available on HF Hub
        return f"PascalNotin/{model_name}"
    return model_path

AA_vocab = "ACDEFGHIKLMNPQRSTVWY"
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
                                                unk_token="[UNK]",
                                                sep_token="[SEP]",
                                                pad_token="[PAD]",
                                                cls_token="[CLS]",
                                                mask_token="[MASK]"
                                            )

def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None):
  all_single_mutants={}
  sequence_list=list(sequence)
  if mutation_range_start is None: mutation_range_start=1
  if mutation_range_end is None: mutation_range_end=len(sequence)
  for position,current_AA in enumerate(sequence[mutation_range_start-1:mutation_range_end]):
    for mutated_AA in AA_vocab:
      if current_AA!=mutated_AA:
        mutated_sequence = sequence_list.copy()
        mutated_sequence[mutation_range_start + position - 1] = mutated_AA
        all_single_mutants[current_AA+str(mutation_range_start+position)+mutated_AA]="".join(mutated_sequence)
  all_single_mutants = pd.DataFrame.from_dict(all_single_mutants,columns=['mutated_sequence'],orient='index')
  all_single_mutants.reset_index(inplace=True)
  all_single_mutants.columns = ['mutant','mutated_sequence']
  return all_single_mutants

def create_scoring_matrix_visual(scores,sequence,image_index=0,mutation_range_start=None,mutation_range_end=None,AA_vocab=AA_vocab,annotate=True,fontsize=20,unique_id=None):
  if unique_id is None:
    unique_id = str(uuid.uuid4())
    
  filtered_scores=scores.copy()
  filtered_scores=filtered_scores[filtered_scores.position.isin(range(mutation_range_start,mutation_range_end+1))]
  piv=filtered_scores.pivot(index='position',columns='target_AA',values='avg_score').round(4)
  
  # Save CSV file
  csv_path = 'fitness_scoring_substitution_matrix_{}_{}.csv'.format(unique_id, image_index)
  
  # Create a more detailed CSV with mutation info
  csv_data = []
  for position in range(mutation_range_start,mutation_range_end+1):
    for target_AA in list(AA_vocab):
      mutant = sequence[position-1]+str(position)+target_AA
      if mutant in set(filtered_scores.mutant):
        score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
        if isinstance(score_value, pd.Series):
          score = float(score_value.iloc[0])
        else:
          score = float(score_value)
      else:
        score = 0.0
      
      csv_data.append({
        'position': position,
        'original_AA': sequence[position-1],
        'target_AA': target_AA,
        'mutation': mutant,
        'fitness_score': score
      })
  
  csv_df = pd.DataFrame(csv_data)
  csv_df.to_csv(csv_path, index=False)
  
  # Continue with visualization
  mutation_range_len = mutation_range_end - mutation_range_start + 1
  # Limit figure size to prevent memory issues
  fig_width = min(50, len(AA_vocab) * 0.8)
  fig_height = min(mutation_range_len, 50)
  fig, ax = plt.subplots(figsize=(fig_width, fig_height))
  scores_dict = {}
  valid_mutant_set=set(filtered_scores.mutant)  
  ax.tick_params(bottom=True, top=True, left=True, right=True)
  ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True)
  if annotate:
    for position in range(mutation_range_start,mutation_range_end+1):
      for target_AA in list(AA_vocab):
        mutant = sequence[position-1]+str(position)+target_AA
        if mutant in valid_mutant_set:
          score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
          if isinstance(score_value, pd.Series):
            scores_dict[mutant] = float(score_value.iloc[0])
          else:
            scores_dict[mutant] = float(score_value)
        else:
          scores_dict[mutant]=0.0
    labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_len,len(AA_vocab))
    heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
                cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
  else:
    heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
                cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
  heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5))
  heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40)
  heat.set_ylabel("Sequence position", fontsize = fontsize*2)
  heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2)
  
  # Set y-axis labels (positions)
  yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)]
  heat.set_yticklabels(yticklabels, fontsize=fontsize, rotation=0)
  
  # Set x-axis labels (amino acids) - ensuring correct number
  heat.set_xticklabels(list(AA_vocab), fontsize=fontsize)
  try:
    plt.tight_layout()
    image_path = 'fitness_scoring_substitution_matrix_{}_{}.png'.format(unique_id, image_index)
    plt.savefig(image_path,dpi=100)
    return image_path, csv_path
  finally:
    plt.close('all')  # Ensure all figures are closed
    plt.clf()  # Clear the current figure
    plt.cla()  # Clear the current axes

def suggest_mutations(scores):
  intro_message = "The following mutations may be sensible options to improve fitness: \n\n"
  #Best mutants
  top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant)
  top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score)
  top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)]
  mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos))
  #Best positions
  positive_scores = scores[scores.avg_score > 0]
  if len(positive_scores) > 0:
    # Only select numeric columns for groupby mean
    positive_scores_position_avg = positive_scores.groupby(['position'])['avg_score'].mean().reset_index()
    top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5)['position'].astype(str))
    position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions))
  else:
    position_recos = "No positions with positive fitness effects found."
  return intro_message+mutant_recos+position_recos

def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab):
  valid = True
  try:
    from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1]
  except:
    valid = False
  if valid and position > 0 and position <= len(sequence):
    if sequence[position-1]!=from_AA: valid=False
  else:
    valid = False
  if to_AA not in AA_vocab: valid=False
  return valid

def cleanup_old_files(max_age_minutes=30):
    """Clean up old inference files"""
    import glob
    current_time = time.time()
    patterns = ["fitness_scoring_substitution_matrix_*.png", 
                "fitness_scoring_substitution_matrix_*.csv",
                "all_mutations_fitness_scores_*.csv"]
    
    cleaned_count = 0
    for pattern in patterns:
        for file_path in glob.glob(pattern):
            try:
                file_age = current_time - os.path.getmtime(file_path)
                if file_age > max_age_minutes * 60:
                    os.remove(file_path)
                    cleaned_count += 1
            except Exception as e:
                # Log error but continue cleaning other files
                print(f"Warning: Could not remove {file_path}: {e}")
    
    if cleaned_count > 0:
        print(f"Cleaned up {cleaned_count} old files")

def get_mutated_protein(sequence,mutant):
  if not check_valid_mutant(sequence,mutant):
    return "The mutant is not valid"
  mutated_sequence = list(sequence)
  mutated_sequence[int(mutant[1:-1])-1]=mutant[-1]
  return ''.join(mutated_sequence)

def score_and_create_matrix_all_singles_impl(sequence,mutation_range_start=None,mutation_range_end=None,model_type="Large",scoring_mirror=False,batch_size_inference=20,max_number_positions_per_heatmap=50,num_workers=0,AA_vocab=AA_vocab):
  # Clean up old files periodically
  cleanup_old_files()
  
  # Generate unique ID for this request
  unique_id = str(uuid.uuid4())
  
  if mutation_range_start is None: mutation_range_start=1
  if mutation_range_end is None: mutation_range_end=len(sequence)
  
  # Clean sequence
  sequence = sequence.strip().upper()
  
  # Validate
  assert len(sequence) > 0, "no sequence entered"
  assert mutation_range_start <= mutation_range_end, "mutation range is invalid"
  assert mutation_range_end <= len(sequence), f"End position ({mutation_range_end}) exceeds sequence length ({len(sequence)})"
  
  # Load model with HF Space compatibility
  try:
    if model_type=="Small":
      model_path = download_model_from_hf("Tranception_Small")
      model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
    elif model_type=="Medium":
      model_path = download_model_from_hf("Tranception_Medium")
      model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
    elif model_type=="Large":
      model_path = download_model_from_hf("Tranception_Large")
      model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
  except Exception as e:
    print(f"Error loading {model_type} model: {e}")
    print("Falling back to Medium model...")
    model_path = download_model_from_hf("Tranception_Medium")
    model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
  
  # Device selection - Zero GPU will provide CUDA when decorated with @spaces.GPU
  print(f"GPU Available: {torch.cuda.is_available()}")
  
  if torch.cuda.is_available():
    device = torch.device("cuda")
    model = model.to(device)
    gpu_name = torch.cuda.get_device_name(0)
    gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
    print(f"Inference will take place on {gpu_name}")
    print(f"GPU Memory: {gpu_memory:.2f} GB")
    # Increase batch size for GPU inference
    batch_size_inference = min(batch_size_inference, 50)
  else:
    device = torch.device("cpu")
    model = model.to(device)
    print("Inference will take place on CPU")
    # Reduce batch size for CPU inference
    batch_size_inference = min(batch_size_inference, 10)
    
  try:
    model.eval()
    model.config.tokenizer = tokenizer
    
    all_single_mutants = create_all_single_mutants(sequence,AA_vocab,mutation_range_start,mutation_range_end)
    
    with torch.no_grad():
      scores = model.score_mutants(DMS_data=all_single_mutants, 
                                        target_seq=sequence, 
                                        scoring_mirror=scoring_mirror, 
                                        batch_size_inference=batch_size_inference,  
                                        num_workers=num_workers, 
                                        indel_mode=False
                                        )
    
    scores = pd.merge(scores,all_single_mutants,on="mutated_sequence",how="left")
    scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1]))
    scores["target_AA"] = scores["mutant"].map(lambda x: x[-1])
    
    score_heatmaps = []
    csv_files = []
    mutation_range = mutation_range_end - mutation_range_start + 1
    number_heatmaps = int((mutation_range - 1) / max_number_positions_per_heatmap) + 1
    image_index = 0
    window_start = mutation_range_start
    window_end = min(mutation_range_end,mutation_range_start+max_number_positions_per_heatmap-1)
    
    for image_index in range(number_heatmaps):
      image_path, csv_path = create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab,unique_id=unique_id)
      score_heatmaps.append(image_path)
      csv_files.append(csv_path)
      window_start += max_number_positions_per_heatmap
      window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1)
    
    # Also save a comprehensive CSV with all mutations
    comprehensive_csv_path = 'all_mutations_fitness_scores_{}.csv'.format(unique_id)
    scores_export = scores[['mutant', 'position', 'target_AA', 'avg_score', 'mutated_sequence']].copy()
    scores_export['original_AA'] = scores_export['mutant'].str[0]
    scores_export = scores_export.rename(columns={'avg_score': 'fitness_score'})
    scores_export = scores_export[['position', 'original_AA', 'target_AA', 'mutant', 'fitness_score', 'mutated_sequence']]
    scores_export.to_csv(comprehensive_csv_path, index=False)
    csv_files.append(comprehensive_csv_path)
    
    return score_heatmaps, suggest_mutations(scores), csv_files
    
  finally:
    # Always clean up model from memory
    if 'model' in locals():
      del model
      gc.collect()
      if torch.cuda.is_available():
        torch.cuda.empty_cache()

# Apply Zero GPU decorator if available
if SPACES_AVAILABLE:
    score_and_create_matrix_all_singles = spaces.GPU(duration=300)(score_and_create_matrix_all_singles_impl)
else:
    score_and_create_matrix_all_singles = score_and_create_matrix_all_singles_impl

def extract_sequence(protein_id, taxon, sequence):
  return sequence

def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end):
  protein_sequence_input = ""
  mutation_range_start = None
  mutation_range_end = None
  return protein_sequence_input,mutation_range_start,mutation_range_end

# Create Gradio app
tranception_design = gr.Blocks()

with tranception_design:
    gr.Markdown("# In silico directed evolution for protein redesign with Tranception")
    gr.Markdown("## 🧬 BASIS-China iGEM Team 2025 - Protein Engineering Platform")
    gr.Markdown("### Welcome to BASIS-China's implementation of Tranception on Hugging Face Spaces!")
    gr.Markdown("We are the BASIS-China iGEM team, and we're excited to present our deployment of the Tranception model for protein fitness prediction. This tool enables in silico directed evolution to iteratively improve protein fitness through single amino acid substitutions. At each step, Tranception computes log likelihood ratios for all possible mutations compared to the starting sequence, generating fitness heatmaps and recommendations to guide protein engineering.")
    gr.Markdown("**Technical Details**: This deployment leverages Hugging Face's Zero GPU infrastructure, which dynamically allocates H200 GPU resources when available. This allows for efficient inference while managing computational resources effectively.")
    
    # Status indicator
    with gr.Row():
        with gr.Column(scale=1):
            def get_gpu_status():
                if SPACES_AVAILABLE:
                    if torch.cuda.is_available():
                        gpu_name = torch.cuda.get_device_name(0)
                        return f"🔥 Zero GPU Active: {gpu_name}"
                    else:
                        return "⚠️ Zero GPU: Ready (GPU allocated on inference)"
                else:
                    return "💻 Running on CPU"
            
            gpu_status = gr.Textbox(
                label="Compute Status", 
                value=get_gpu_status, 
                every=5,  # Update every 5 seconds
                interactive=False,
                elem_id="gpu_status"
            )
    
    with gr.Tabs():
        with gr.TabItem("Input"):
            with gr.Row():
                protein_sequence_input = gr.Textbox(lines=1, 
                                                label="Protein sequence",
                                                placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)"
                                                )
            
            with gr.Row():
                mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)", value=1, precision=0)
                mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)", value=10, precision=0)

        with gr.TabItem("Parameters"):
            with gr.Row():
                model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)", 
                                                choices=["Small","Medium","Large"], 
                                                value="Small")
            with gr.Row():
                scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)")
            with gr.Row():
                batch_size_inference = gr.Number(label="Model batch size at inference time (reduce for CPU)",value = 10, precision=0)
            with gr.Row():
                gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.")
                
    with gr.Row():
        clear_button = gr.Button(value="Clear",variant="secondary")
        run_button = gr.Button(value="Predict fitness",variant="primary")
        
    protein_ID = gr.Textbox(label="Uniprot ID", visible=False)
    taxon = gr.Textbox(label="Taxon", visible=False)
    
    examples = gr.Examples(
        inputs=[protein_ID, taxon, protein_sequence_input],
        outputs=[protein_sequence_input],
        fn=extract_sequence,
        examples=[
            ['ADRB2_HUMAN'  ,'Human',           'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'],
            ['IF1_ECOLI'    ,'Prokaryote',      'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
            ['P53_HUMAN'    ,'Human',           'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
            ['BLAT_ECOLX'	  ,'Prokaryote',      'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'],
            ['BRCA1_HUMAN'	,'Human',           'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'],
            ['CALM1_HUMAN'	,'Human',           'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'],
            ['CCDB_ECOLI'	  ,'Prokaryote',	    'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'],
            ['GFP_AEQVI'	  ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'],
            ['GRB2_HUMAN'	  ,'Human',           'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'],
        ],
    )
    
    gr.Markdown("<br>")
    gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
    gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones")
    output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range") #Using Gallery to break down large scoring matrices into smaller images
    
    output_recommendations = gr.Textbox(label="Mutation recommendations")
    
    with gr.Row():
        gr.Markdown("## Download CSV Files")
    output_csv_files = gr.File(label="Download CSV files with fitness scores", file_count="multiple", interactive=False)
    
    clear_button.click(
        inputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
        outputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
        fn=clear_inputs
    )
    run_button.click(
        fn=score_and_create_matrix_all_singles,
        inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror,batch_size_inference],
        outputs=[output_image,output_recommendations,output_csv_files],
    )
    
    gr.Markdown("# Mutate the starting protein sequence")
    with gr.Row():
        mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)")
    mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary")
    mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence")
    mutate_button.click(
        fn = get_mutated_protein,
        inputs = [protein_sequence_input,mutation_triplet],
        outputs = mutated_protein_sequence
    )
    
    gr.Markdown("<p>You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.</p>")
    gr.Markdown("### About BASIS-China iGEM Team")
    gr.Markdown("We are a high school synthetic biology team participating in the International Genetically Engineered Machine (iGEM) competition. Our 2025 project focuses on protein engineering and computational biology applications. This Tranception deployment is part of our broader effort to make advanced protein design tools accessible to the synthetic biology community.")
    gr.Markdown("### About Tranception")
    gr.Markdown("<p><b>Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval</b><br>Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks<sup>*</sup>, Yarin Gal<sup>*</sup><br><sup>* equal senior authorship</sup></p>")
    gr.Markdown("Links: <a href='https://proceedings.mlr.press/v162/notin22a.html' target='_blank'>Paper</a>  <a href='https://github.com/OATML-Markslab/Tranception' target='_blank'>Code</a>  <a href='https://sites.google.com/view/proteingym/substitutions' target='_blank'>ProteinGym</a>  <a href='https://igem.org/teams/5247' target='_blank'>BASIS-China iGEM Team</a>")

if __name__ == "__main__":
    # Configure queue for better resource management
    tranception_design.queue(
        max_size=10,  # Limit queue size
        status_update_rate="auto",  # Show status updates
        api_open=False  # Disable API to prevent external requests
    )
    
    # Launch with settings optimized for HF Spaces
    try:
        tranception_design.launch(
            max_threads=2,  # Limit concurrent threads
            show_error=True,
            server_name="0.0.0.0",
            server_port=7860,
            quiet=False,  # Show all logs
            prevent_thread_lock=True  # Prevent thread locking issues
        )
    except Exception as e:
        print(f"Launch error: {e}")
        # If launch fails, try again with minimal settings
        tranception_design.launch()