File size: 25,325 Bytes
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4990b34
ac2c54a
 
 
 
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4990b34
 
 
 
7150117
 
 
 
 
4990b34
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4990b34
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac2c54a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7150117
 
 
 
 
 
 
5d338ae
ac2c54a
 
 
4990b34
 
 
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4990b34
7150117
 
 
 
 
 
4990b34
7150117
 
 
 
 
 
ac2c54a
 
 
 
 
 
7150117
 
 
3e2f09d
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac2c54a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#!/usr/bin/env python3
"""
Tranception Design App - Hugging Face Spaces Version
"""
import os
import sys
import torch
import transformers
from transformers import PreTrainedTokenizerFast
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
from huggingface_hub import hf_hub_download
import zipfile
import shutil
import uuid
import tempfile
import atexit
import threading
import gc

# Add current directory to path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

# Check if we need to download and extract the tranception module
if not os.path.exists("tranception"):
    print("Downloading Tranception repository...")
    # Clone the repository structure
    os.system("git clone https://github.com/OATML-Markslab/Tranception.git temp_tranception")
    # Move the tranception module to current directory
    shutil.move("temp_tranception/tranception", "tranception")
    # Clean up
    shutil.rmtree("temp_tranception")

import tranception
from tranception import config, model_pytorch

# Download model checkpoints if not present
def download_model_from_hf(model_name):
    """Download model from Hugging Face Hub if not present locally"""
    model_path = f"./{model_name}"
    if not os.path.exists(model_path):
        print(f"Downloading {model_name} model...")
        try:
            # For Small and Medium models, they are available on HF Hub
            if model_name in ["Tranception_Small", "Tranception_Medium"]:
                return f"PascalNotin/{model_name}"
            else:
                # For Large model, we need to download from the original source
                print("Note: Large model needs to be downloaded from the original source.")
                print("Using Medium model as fallback...")
                return "PascalNotin/Tranception_Medium"
        except Exception as e:
            print(f"Error downloading {model_name}: {e}")
            return None
    return model_path

AA_vocab = "ACDEFGHIKLMNPQRSTVWY"
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
                                                unk_token="[UNK]",
                                                sep_token="[SEP]",
                                                pad_token="[PAD]",
                                                cls_token="[CLS]",
                                                mask_token="[MASK]"
                                            )

def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None):
  all_single_mutants={}
  sequence_list=list(sequence)
  if mutation_range_start is None: mutation_range_start=1
  if mutation_range_end is None: mutation_range_end=len(sequence)
  for position,current_AA in enumerate(sequence[mutation_range_start-1:mutation_range_end]):
    for mutated_AA in AA_vocab:
      if current_AA!=mutated_AA:
        mutated_sequence = sequence_list.copy()
        mutated_sequence[mutation_range_start + position - 1] = mutated_AA
        all_single_mutants[current_AA+str(mutation_range_start+position)+mutated_AA]="".join(mutated_sequence)
  all_single_mutants = pd.DataFrame.from_dict(all_single_mutants,columns=['mutated_sequence'],orient='index')
  all_single_mutants.reset_index(inplace=True)
  all_single_mutants.columns = ['mutant','mutated_sequence']
  return all_single_mutants

def create_scoring_matrix_visual(scores,sequence,image_index=0,mutation_range_start=None,mutation_range_end=None,AA_vocab=AA_vocab,annotate=True,fontsize=20,unique_id=None):
  if unique_id is None:
    unique_id = str(uuid.uuid4())
    
  filtered_scores=scores.copy()
  filtered_scores=filtered_scores[filtered_scores.position.isin(range(mutation_range_start,mutation_range_end+1))]
  piv=filtered_scores.pivot(index='position',columns='target_AA',values='avg_score').round(4)
  
  # Save CSV file
  csv_path = 'fitness_scoring_substitution_matrix_{}_{}.csv'.format(unique_id, image_index)
  
  # Create a more detailed CSV with mutation info
  csv_data = []
  for position in range(mutation_range_start,mutation_range_end+1):
    for target_AA in list(AA_vocab):
      mutant = sequence[position-1]+str(position)+target_AA
      if mutant in set(filtered_scores.mutant):
        score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
        if isinstance(score_value, pd.Series):
          score = float(score_value.iloc[0])
        else:
          score = float(score_value)
      else:
        score = 0.0
      
      csv_data.append({
        'position': position,
        'original_AA': sequence[position-1],
        'target_AA': target_AA,
        'mutation': mutant,
        'fitness_score': score
      })
  
  csv_df = pd.DataFrame(csv_data)
  csv_df.to_csv(csv_path, index=False)
  
  # Continue with visualization
  mutation_range_len = mutation_range_end - mutation_range_start + 1
  fig, ax = plt.subplots(figsize=(50,mutation_range_len))
  scores_dict = {}
  valid_mutant_set=set(filtered_scores.mutant)  
  ax.tick_params(bottom=True, top=True, left=True, right=True)
  ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True)
  if annotate:
    for position in range(mutation_range_start,mutation_range_end+1):
      for target_AA in list(AA_vocab):
        mutant = sequence[position-1]+str(position)+target_AA
        if mutant in valid_mutant_set:
          score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
          if isinstance(score_value, pd.Series):
            scores_dict[mutant] = float(score_value.iloc[0])
          else:
            scores_dict[mutant] = float(score_value)
        else:
          scores_dict[mutant]=0.0
    labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_len,len(AA_vocab))
    heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
                cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
  else:
    heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
                cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
  heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5))
  heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40)
  heat.set_ylabel("Sequence position", fontsize = fontsize*2)
  heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2)
  
  # Set y-axis labels (positions)
  yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)]
  heat.set_yticklabels(yticklabels, fontsize=fontsize, rotation=0)
  
  # Set x-axis labels (amino acids) - ensuring correct number
  heat.set_xticklabels(list(AA_vocab), fontsize=fontsize)
  plt.tight_layout()
  image_path = 'fitness_scoring_substitution_matrix_{}_{}.png'.format(unique_id, image_index)
  plt.savefig(image_path,dpi=100)
  plt.close()
  return image_path, csv_path

def suggest_mutations(scores):
  intro_message = "The following mutations may be sensible options to improve fitness: \n\n"
  #Best mutants
  top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant)
  top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score)
  top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)]
  mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos))
  #Best positions
  positive_scores = scores[scores.avg_score > 0]
  if len(positive_scores) > 0:
    # Only select numeric columns for groupby mean
    positive_scores_position_avg = positive_scores.groupby(['position'])['avg_score'].mean().reset_index()
    top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5)['position'].astype(str))
    position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions))
  else:
    position_recos = "No positions with positive fitness effects found."
  return intro_message+mutant_recos+position_recos

def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab):
  valid = True
  try:
    from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1]
  except:
    valid = False
  if valid and position > 0 and position <= len(sequence):
    if sequence[position-1]!=from_AA: valid=False
  else:
    valid = False
  if to_AA not in AA_vocab: valid=False
  return valid

# Global variable to track active inference threads
active_inferences = {}
inference_lock = threading.Lock()

def cleanup_old_files(max_age_minutes=30):
    """Clean up old inference files"""
    import glob
    import time
    current_time = time.time()
    patterns = ["fitness_scoring_substitution_matrix_*.png", 
                "fitness_scoring_substitution_matrix_*.csv",
                "all_mutations_fitness_scores_*.csv"]
    
    for pattern in patterns:
        for file_path in glob.glob(pattern):
            try:
                file_age = current_time - os.path.getmtime(file_path)
                if file_age > max_age_minutes * 60:
                    os.remove(file_path)
            except:
                pass

def get_mutated_protein(sequence,mutant):
  if not check_valid_mutant(sequence,mutant):
    return "The mutant is not valid"
  mutated_sequence = list(sequence)
  mutated_sequence[int(mutant[1:-1])-1]=mutant[-1]
  return ''.join(mutated_sequence)

def score_and_create_matrix_all_singles(sequence,mutation_range_start=None,mutation_range_end=None,model_type="Large",scoring_mirror=False,batch_size_inference=20,max_number_positions_per_heatmap=50,num_workers=0,AA_vocab=AA_vocab):
  # Clean up old files periodically
  cleanup_old_files()
  
  # Generate unique ID for this request
  unique_id = str(uuid.uuid4())
  
  if mutation_range_start is None: mutation_range_start=1
  if mutation_range_end is None: mutation_range_end=len(sequence)
  
  # Clean sequence
  sequence = sequence.strip().upper()
  
  # Validate
  assert len(sequence) > 0, "no sequence entered"
  assert mutation_range_start <= mutation_range_end, "mutation range is invalid"
  assert mutation_range_end <= len(sequence), f"End position ({mutation_range_end}) exceeds sequence length ({len(sequence)})"
  
  # Load model with HF Space compatibility
  if model_type=="Small":
    model_path = download_model_from_hf("Tranception_Small")
    model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
  elif model_type=="Medium":
    model_path = download_model_from_hf("Tranception_Medium")
    model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
  elif model_type=="Large":
    # For HF Spaces, we recommend using Medium model due to memory constraints
    print("Note: Large model requires significant memory. Using Medium model for HF Spaces deployment.")
    model_path = download_model_from_hf("Tranception_Medium")
    model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
  
  # Device selection - for HF Spaces, typically CPU
  if torch.cuda.is_available():
    device = torch.device("cuda")
    model.cuda()
    print("Inference will take place on NVIDIA GPU")
  else:
    device = torch.device("cpu")
    model.to(device)
    print("Inference will take place on CPU")
    # Reduce batch size for CPU inference
    batch_size_inference = min(batch_size_inference, 10)
    
  model.eval()
  model.config.tokenizer = tokenizer
  
  all_single_mutants = create_all_single_mutants(sequence,AA_vocab,mutation_range_start,mutation_range_end)
  
  with torch.no_grad():
    scores = model.score_mutants(DMS_data=all_single_mutants, 
                                      target_seq=sequence, 
                                      scoring_mirror=scoring_mirror, 
                                      batch_size_inference=batch_size_inference,  
                                      num_workers=num_workers, 
                                      indel_mode=False
                                      )
  
  scores = pd.merge(scores,all_single_mutants,on="mutated_sequence",how="left")
  scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1]))
  scores["target_AA"] = scores["mutant"].map(lambda x: x[-1])
  
  score_heatmaps = []
  csv_files = []
  mutation_range = mutation_range_end - mutation_range_start + 1
  number_heatmaps = int((mutation_range - 1) / max_number_positions_per_heatmap) + 1
  image_index = 0
  window_start = mutation_range_start
  window_end = min(mutation_range_end,mutation_range_start+max_number_positions_per_heatmap-1)
  
  for image_index in range(number_heatmaps):
    image_path, csv_path = create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab,unique_id=unique_id)
    score_heatmaps.append(image_path)
    csv_files.append(csv_path)
    window_start += max_number_positions_per_heatmap
    window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1)
  
  # Also save a comprehensive CSV with all mutations
  comprehensive_csv_path = 'all_mutations_fitness_scores_{}.csv'.format(unique_id)
  scores_export = scores[['mutant', 'position', 'target_AA', 'avg_score', 'mutated_sequence']].copy()
  scores_export['original_AA'] = scores_export['mutant'].str[0]
  scores_export = scores_export.rename(columns={'avg_score': 'fitness_score'})
  scores_export = scores_export[['position', 'original_AA', 'target_AA', 'mutant', 'fitness_score', 'mutated_sequence']]
  scores_export.to_csv(comprehensive_csv_path, index=False)
  csv_files.append(comprehensive_csv_path)
  
  # Clean up model from memory after inference
  del model
  gc.collect()
  if torch.cuda.is_available():
    torch.cuda.empty_cache()
    
  return score_heatmaps, suggest_mutations(scores), csv_files

def extract_sequence(protein_id, taxon, sequence):
  return sequence

def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end):
  protein_sequence_input = ""
  mutation_range_start = None
  mutation_range_end = None
  return protein_sequence_input,mutation_range_start,mutation_range_end

# Create Gradio app
tranception_design = gr.Blocks()

with tranception_design:
    gr.Markdown("# In silico directed evolution for protein redesign with Tranception")
    gr.Markdown("## 🧬 Hugging Face Spaces Demo")
    gr.Markdown("Perform in silico directed evolution with Tranception to iteratively improve the fitness of a protein of interest, one mutation at a time. At each step, the Tranception model computes the log likelihood ratios of all possible single amino acid substitution Vs the starting sequence, and outputs a fitness heatmap and recommandations to guide the selection of the mutation to apply.")
    gr.Markdown("**Note**: This demo runs on CPU in Hugging Face Spaces. For faster inference, consider using GPU locally or selecting the Small model.")
    
    with gr.Tabs():
        with gr.TabItem("Input"):
            with gr.Row():
                protein_sequence_input = gr.Textbox(lines=1, 
                                                label="Protein sequence",
                                                placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)"
                                                )
            
            with gr.Row():
                mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)", value=1, precision=0)
                mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)", value=10, precision=0)

        with gr.TabItem("Parameters"):
            with gr.Row():
                model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)", 
                                                choices=["Small","Medium","Large"], 
                                                value="Small")
            with gr.Row():
                scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)")
            with gr.Row():
                batch_size_inference = gr.Number(label="Model batch size at inference time (reduce for CPU)",value = 10, precision=0)
            with gr.Row():
                gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.")
                
    with gr.Row():
        clear_button = gr.Button(value="Clear",variant="secondary")
        run_button = gr.Button(value="Predict fitness",variant="primary")
        
    protein_ID = gr.Textbox(label="Uniprot ID", visible=False)
    taxon = gr.Textbox(label="Taxon", visible=False)
    
    examples = gr.Examples(
        inputs=[protein_ID, taxon, protein_sequence_input],
        outputs=[protein_sequence_input],
        fn=extract_sequence,
        examples=[
            ['ADRB2_HUMAN'  ,'Human',           'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'],
            ['IF1_ECOLI'    ,'Prokaryote',      'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
            ['P53_HUMAN'    ,'Human',           'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
            ['BLAT_ECOLX'	  ,'Prokaryote',      'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'],
            ['BRCA1_HUMAN'	,'Human',           'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'],
            ['CALM1_HUMAN'	,'Human',           'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'],
            ['CCDB_ECOLI'	  ,'Prokaryote',	    'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'],
            ['GFP_AEQVI'	  ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'],
            ['GRB2_HUMAN'	  ,'Human',           'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'],
        ],
    )
    
    gr.Markdown("<br>")
    gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
    gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones")
    output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range") #Using Gallery to break down large scoring matrices into smaller images
    
    output_recommendations = gr.Textbox(label="Mutation recommendations")
    
    with gr.Row():
        gr.Markdown("## Download CSV Files")
    output_csv_files = gr.File(label="Download CSV files with fitness scores", file_count="multiple", interactive=False)
    
    clear_button.click(
        inputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
        outputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
        fn=clear_inputs
    )
    run_button.click(
        fn=score_and_create_matrix_all_singles,
        inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror,batch_size_inference],
        outputs=[output_image,output_recommendations,output_csv_files],
    )
    
    gr.Markdown("# Mutate the starting protein sequence")
    with gr.Row():
        mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)")
    mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary")
    mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence")
    mutate_button.click(
        fn = get_mutated_protein,
        inputs = [protein_sequence_input,mutation_triplet],
        outputs = mutated_protein_sequence
    )
    
    gr.Markdown("<p>You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.</p>")
    gr.Markdown("For more information about the Tranception model, please refer to our paper below:")
    gr.Markdown("<p><b>Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval</b><br>Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks<sup>*</sup>, Yarin Gal<sup>*</sup><br><sup>* equal senior authorship</sup></p>")
    gr.Markdown("Links: <a href='https://proceedings.mlr.press/v162/notin22a.html' target='_blank'>Paper</a>  <a href='https://github.com/OATML-Markslab/Tranception' target='_blank'>Code</a>  <a href='https://sites.google.com/view/proteingym/substitutions' target='_blank'>ProteinGym</a>")

if __name__ == "__main__":
    # Configure queue for better resource management
    tranception_design.queue(
        max_size=10,  # Limit queue size
        status_update_rate="auto",  # Show status updates
        api_open=False  # Disable API to prevent external requests
    )
    
    # Launch with appropriate settings for HF Spaces
    tranception_design.launch(
        max_threads=2,  # Limit concurrent threads
        show_error=True,
        server_name="0.0.0.0",
        server_port=7860
    )