Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
""" | |
Tranception Design App - Hugging Face Spaces Version (Zero GPU Fixed) | |
""" | |
import os | |
import sys | |
import torch | |
import transformers | |
from transformers import PreTrainedTokenizerFast | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import shutil | |
import uuid | |
import gc | |
import time | |
import datetime | |
# Simplified Zero GPU handling | |
try: | |
import spaces | |
SPACES_AVAILABLE = True | |
print("Zero GPU support detected") | |
except ImportError: | |
SPACES_AVAILABLE = False | |
print("Running without Zero GPU support") | |
# Add current directory to path | |
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) | |
# Check if we need to download and extract the tranception module | |
if not os.path.exists("tranception"): | |
print("Downloading Tranception repository...") | |
try: | |
# Clone the repository structure | |
result = os.system("git clone https://github.com/OATML-Markslab/Tranception.git temp_tranception") | |
if result != 0: | |
raise Exception("Failed to clone Tranception repository") | |
# Move the tranception module to current directory | |
shutil.move("temp_tranception/tranception", "tranception") | |
# Clean up | |
shutil.rmtree("temp_tranception") | |
except Exception as e: | |
print(f"Error setting up Tranception: {e}") | |
if os.path.exists("temp_tranception"): | |
shutil.rmtree("temp_tranception") | |
raise | |
import tranception | |
from tranception import config, model_pytorch | |
# Download model checkpoints if not present | |
def download_model_from_hf(model_name): | |
"""Download model from Hugging Face Hub if not present locally""" | |
model_path = f"./{model_name}" | |
if not os.path.exists(model_path): | |
print(f"Loading {model_name} model from Hugging Face Hub...") | |
# All models are available on HF Hub | |
return f"PascalNotin/{model_name}" | |
return model_path | |
AA_vocab = "ACDEFGHIKLMNPQRSTVWY" | |
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer", | |
unk_token="[UNK]", | |
sep_token="[SEP]", | |
pad_token="[PAD]", | |
cls_token="[CLS]", | |
mask_token="[MASK]" | |
) | |
def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None): | |
all_single_mutants={} | |
sequence_list=list(sequence) | |
if mutation_range_start is None: mutation_range_start=1 | |
if mutation_range_end is None: mutation_range_end=len(sequence) | |
for position,current_AA in enumerate(sequence[mutation_range_start-1:mutation_range_end]): | |
for mutated_AA in AA_vocab: | |
if current_AA!=mutated_AA: | |
mutated_sequence = sequence_list.copy() | |
mutated_sequence[mutation_range_start + position - 1] = mutated_AA | |
all_single_mutants[current_AA+str(mutation_range_start+position)+mutated_AA]="".join(mutated_sequence) | |
all_single_mutants = pd.DataFrame.from_dict(all_single_mutants,columns=['mutated_sequence'],orient='index') | |
all_single_mutants.reset_index(inplace=True) | |
all_single_mutants.columns = ['mutant','mutated_sequence'] | |
return all_single_mutants | |
def create_scoring_matrix_visual(scores,sequence,image_index=0,mutation_range_start=None,mutation_range_end=None,AA_vocab=AA_vocab,annotate=True,fontsize=20,unique_id=None): | |
if unique_id is None: | |
unique_id = str(uuid.uuid4()) | |
filtered_scores=scores.copy() | |
filtered_scores=filtered_scores[filtered_scores.position.isin(range(mutation_range_start,mutation_range_end+1))] | |
piv=filtered_scores.pivot(index='position',columns='target_AA',values='avg_score').round(4) | |
# Save CSV file | |
csv_path = 'fitness_scoring_substitution_matrix_{}_{}.csv'.format(unique_id, image_index) | |
# Create a more detailed CSV with mutation info | |
csv_data = [] | |
for position in range(mutation_range_start,mutation_range_end+1): | |
for target_AA in list(AA_vocab): | |
mutant = sequence[position-1]+str(position)+target_AA | |
if mutant in set(filtered_scores.mutant): | |
score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score'] | |
if isinstance(score_value, pd.Series): | |
score = float(score_value.iloc[0]) | |
else: | |
score = float(score_value) | |
else: | |
score = 0.0 | |
csv_data.append({ | |
'position': position, | |
'original_AA': sequence[position-1], | |
'target_AA': target_AA, | |
'mutation': mutant, | |
'fitness_score': score | |
}) | |
csv_df = pd.DataFrame(csv_data) | |
csv_df.to_csv(csv_path, index=False) | |
# Continue with visualization | |
mutation_range_len = mutation_range_end - mutation_range_start + 1 | |
# Limit figure size to prevent memory issues | |
fig_width = min(50, len(AA_vocab) * 0.8) | |
fig_height = min(mutation_range_len, 50) | |
fig, ax = plt.subplots(figsize=(fig_width, fig_height)) | |
scores_dict = {} | |
valid_mutant_set=set(filtered_scores.mutant) | |
ax.tick_params(bottom=True, top=True, left=True, right=True) | |
ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True) | |
if annotate: | |
for position in range(mutation_range_start,mutation_range_end+1): | |
for target_AA in list(AA_vocab): | |
mutant = sequence[position-1]+str(position)+target_AA | |
if mutant in valid_mutant_set: | |
score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score'] | |
if isinstance(score_value, pd.Series): | |
scores_dict[mutant] = float(score_value.iloc[0]) | |
else: | |
scores_dict[mutant] = float(score_value) | |
else: | |
scores_dict[mutant]=0.0 | |
labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_len,len(AA_vocab)) | |
heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\ | |
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize}) | |
else: | |
heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\ | |
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize}) | |
heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5)) | |
heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40) | |
heat.set_ylabel("Sequence position", fontsize = fontsize*2) | |
heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2) | |
# Set y-axis labels (positions) | |
yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)] | |
heat.set_yticklabels(yticklabels, fontsize=fontsize, rotation=0) | |
# Set x-axis labels (amino acids) - ensuring correct number | |
heat.set_xticklabels(list(AA_vocab), fontsize=fontsize) | |
try: | |
plt.tight_layout() | |
image_path = 'fitness_scoring_substitution_matrix_{}_{}.png'.format(unique_id, image_index) | |
plt.savefig(image_path,dpi=100) | |
return image_path, csv_path | |
finally: | |
plt.close('all') # Ensure all figures are closed | |
plt.clf() # Clear the current figure | |
plt.cla() # Clear the current axes | |
def suggest_mutations(scores): | |
intro_message = "The following mutations may be sensible options to improve fitness: \n\n" | |
#Best mutants | |
top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant) | |
top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score) | |
top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)] | |
mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos)) | |
#Best positions | |
positive_scores = scores[scores.avg_score > 0] | |
if len(positive_scores) > 0: | |
# Only select numeric columns for groupby mean | |
positive_scores_position_avg = positive_scores.groupby(['position'])['avg_score'].mean().reset_index() | |
top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5)['position'].astype(str)) | |
position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions)) | |
else: | |
position_recos = "No positions with positive fitness effects found." | |
return intro_message+mutant_recos+position_recos | |
def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab): | |
valid = True | |
try: | |
from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1] | |
except: | |
valid = False | |
if valid and position > 0 and position <= len(sequence): | |
if sequence[position-1]!=from_AA: valid=False | |
else: | |
valid = False | |
if to_AA not in AA_vocab: valid=False | |
return valid | |
def cleanup_old_files(max_age_minutes=30): | |
"""Clean up old inference files""" | |
import glob | |
current_time = time.time() | |
patterns = ["fitness_scoring_substitution_matrix_*.png", | |
"fitness_scoring_substitution_matrix_*.csv", | |
"all_mutations_fitness_scores_*.csv"] | |
cleaned_count = 0 | |
for pattern in patterns: | |
for file_path in glob.glob(pattern): | |
try: | |
file_age = current_time - os.path.getmtime(file_path) | |
if file_age > max_age_minutes * 60: | |
os.remove(file_path) | |
cleaned_count += 1 | |
except Exception as e: | |
# Log error but continue cleaning other files | |
print(f"Warning: Could not remove {file_path}: {e}") | |
if cleaned_count > 0: | |
print(f"Cleaned up {cleaned_count} old files") | |
def get_mutated_protein(sequence,mutant): | |
if not check_valid_mutant(sequence,mutant): | |
return "The mutant is not valid" | |
mutated_sequence = list(sequence) | |
mutated_sequence[int(mutant[1:-1])-1]=mutant[-1] | |
return ''.join(mutated_sequence) | |
def score_and_create_matrix_all_singles_impl(sequence,mutation_range_start=None,mutation_range_end=None,model_type="Large",scoring_mirror=False,batch_size_inference=20,max_number_positions_per_heatmap=50,num_workers=0,AA_vocab=AA_vocab): | |
# Clean up old files periodically | |
cleanup_old_files() | |
# Generate unique ID for this request | |
unique_id = str(uuid.uuid4()) | |
if mutation_range_start is None: mutation_range_start=1 | |
if mutation_range_end is None: mutation_range_end=len(sequence) | |
# Clean sequence | |
sequence = sequence.strip().upper() | |
# Validate | |
assert len(sequence) > 0, "no sequence entered" | |
assert mutation_range_start <= mutation_range_end, "mutation range is invalid" | |
assert mutation_range_end <= len(sequence), f"End position ({mutation_range_end}) exceeds sequence length ({len(sequence)})" | |
# Load model with HF Space compatibility | |
try: | |
if model_type=="Small": | |
model_path = download_model_from_hf("Tranception_Small") | |
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path) | |
elif model_type=="Medium": | |
model_path = download_model_from_hf("Tranception_Medium") | |
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path) | |
elif model_type=="Large": | |
model_path = download_model_from_hf("Tranception_Large") | |
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path) | |
except Exception as e: | |
print(f"Error loading {model_type} model: {e}") | |
print("Falling back to Medium model...") | |
model_path = download_model_from_hf("Tranception_Medium") | |
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path) | |
# Device selection - Zero GPU will provide CUDA when decorated with @spaces.GPU | |
print(f"GPU Available: {torch.cuda.is_available()}") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
model = model.to(device) | |
gpu_name = torch.cuda.get_device_name(0) | |
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3 | |
print(f"Inference will take place on {gpu_name}") | |
print(f"GPU Memory: {gpu_memory:.2f} GB") | |
# Increase batch size for GPU inference | |
batch_size_inference = min(batch_size_inference, 50) | |
else: | |
device = torch.device("cpu") | |
model = model.to(device) | |
print("Inference will take place on CPU") | |
# Reduce batch size for CPU inference | |
batch_size_inference = min(batch_size_inference, 10) | |
try: | |
model.eval() | |
model.config.tokenizer = tokenizer | |
all_single_mutants = create_all_single_mutants(sequence,AA_vocab,mutation_range_start,mutation_range_end) | |
with torch.no_grad(): | |
scores = model.score_mutants(DMS_data=all_single_mutants, | |
target_seq=sequence, | |
scoring_mirror=scoring_mirror, | |
batch_size_inference=batch_size_inference, | |
num_workers=num_workers, | |
indel_mode=False | |
) | |
scores = pd.merge(scores,all_single_mutants,on="mutated_sequence",how="left") | |
scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1])) | |
scores["target_AA"] = scores["mutant"].map(lambda x: x[-1]) | |
score_heatmaps = [] | |
csv_files = [] | |
mutation_range = mutation_range_end - mutation_range_start + 1 | |
number_heatmaps = int((mutation_range - 1) / max_number_positions_per_heatmap) + 1 | |
image_index = 0 | |
window_start = mutation_range_start | |
window_end = min(mutation_range_end,mutation_range_start+max_number_positions_per_heatmap-1) | |
for image_index in range(number_heatmaps): | |
image_path, csv_path = create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab,unique_id=unique_id) | |
score_heatmaps.append(image_path) | |
csv_files.append(csv_path) | |
window_start += max_number_positions_per_heatmap | |
window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1) | |
# Also save a comprehensive CSV with all mutations | |
comprehensive_csv_path = 'all_mutations_fitness_scores_{}.csv'.format(unique_id) | |
scores_export = scores[['mutant', 'position', 'target_AA', 'avg_score', 'mutated_sequence']].copy() | |
scores_export['original_AA'] = scores_export['mutant'].str[0] | |
scores_export = scores_export.rename(columns={'avg_score': 'fitness_score'}) | |
scores_export = scores_export[['position', 'original_AA', 'target_AA', 'mutant', 'fitness_score', 'mutated_sequence']] | |
scores_export.to_csv(comprehensive_csv_path, index=False) | |
csv_files.append(comprehensive_csv_path) | |
return score_heatmaps, suggest_mutations(scores), csv_files | |
finally: | |
# Always clean up model from memory | |
if 'model' in locals(): | |
del model | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Apply Zero GPU decorator if available | |
if SPACES_AVAILABLE: | |
score_and_create_matrix_all_singles = spaces.GPU(duration=300)(score_and_create_matrix_all_singles_impl) | |
else: | |
score_and_create_matrix_all_singles = score_and_create_matrix_all_singles_impl | |
def extract_sequence(protein_id, taxon, sequence): | |
return sequence | |
def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end): | |
protein_sequence_input = "" | |
mutation_range_start = None | |
mutation_range_end = None | |
return protein_sequence_input,mutation_range_start,mutation_range_end | |
# Create Gradio app | |
tranception_design = gr.Blocks() | |
with tranception_design: | |
gr.Markdown("# In silico directed evolution for protein redesign with Tranception") | |
gr.Markdown("## 🧬 BASIS-China iGEM Team 2025 - Protein Engineering Platform") | |
gr.Markdown("### Welcome to BASIS-China's implementation of Tranception on Hugging Face Spaces!") | |
gr.Markdown("We are the BASIS-China iGEM team, and we're excited to present our deployment of the Tranception model for protein fitness prediction. This tool enables in silico directed evolution to iteratively improve protein fitness through single amino acid substitutions. At each step, Tranception computes log likelihood ratios for all possible mutations compared to the starting sequence, generating fitness heatmaps and recommendations to guide protein engineering.") | |
gr.Markdown("**Technical Details**: This deployment leverages Hugging Face's Zero GPU infrastructure, which dynamically allocates H200 GPU resources when available. This allows for efficient inference while managing computational resources effectively.") | |
# Status indicator | |
with gr.Row(): | |
with gr.Column(scale=1): | |
def get_gpu_status(): | |
if SPACES_AVAILABLE: | |
if torch.cuda.is_available(): | |
gpu_name = torch.cuda.get_device_name(0) | |
return f"🔥 Zero GPU Active: {gpu_name}" | |
else: | |
return "⚠️ Zero GPU: Ready (GPU allocated on inference)" | |
else: | |
return "💻 Running on CPU" | |
gpu_status = gr.Textbox( | |
label="Compute Status", | |
value=get_gpu_status, | |
every=5, # Update every 5 seconds | |
interactive=False, | |
elem_id="gpu_status" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Input"): | |
with gr.Row(): | |
protein_sequence_input = gr.Textbox(lines=1, | |
label="Protein sequence", | |
placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)" | |
) | |
with gr.Row(): | |
mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)", value=1, precision=0) | |
mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)", value=10, precision=0) | |
with gr.TabItem("Parameters"): | |
with gr.Row(): | |
model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)", | |
choices=["Small","Medium","Large"], | |
value="Small") | |
with gr.Row(): | |
scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)") | |
with gr.Row(): | |
batch_size_inference = gr.Number(label="Model batch size at inference time (reduce for CPU)",value = 10, precision=0) | |
with gr.Row(): | |
gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.") | |
with gr.Row(): | |
clear_button = gr.Button(value="Clear",variant="secondary") | |
run_button = gr.Button(value="Predict fitness",variant="primary") | |
protein_ID = gr.Textbox(label="Uniprot ID", visible=False) | |
taxon = gr.Textbox(label="Taxon", visible=False) | |
examples = gr.Examples( | |
inputs=[protein_ID, taxon, protein_sequence_input], | |
outputs=[protein_sequence_input], | |
fn=extract_sequence, | |
examples=[ | |
['ADRB2_HUMAN' ,'Human', 'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'], | |
['IF1_ECOLI' ,'Prokaryote', 'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'], | |
['P53_HUMAN' ,'Human', 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'], | |
['BLAT_ECOLX' ,'Prokaryote', 'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'], | |
['BRCA1_HUMAN' ,'Human', 'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'], | |
['CALM1_HUMAN' ,'Human', 'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'], | |
['CCDB_ECOLI' ,'Prokaryote', 'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'], | |
['GFP_AEQVI' ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'], | |
['GRB2_HUMAN' ,'Human', 'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'], | |
], | |
) | |
gr.Markdown("<br>") | |
gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range") | |
gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones") | |
output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range") #Using Gallery to break down large scoring matrices into smaller images | |
output_recommendations = gr.Textbox(label="Mutation recommendations") | |
with gr.Row(): | |
gr.Markdown("## Download CSV Files") | |
output_csv_files = gr.File(label="Download CSV files with fitness scores", file_count="multiple", interactive=False) | |
clear_button.click( | |
inputs = [protein_sequence_input,mutation_range_start,mutation_range_end], | |
outputs = [protein_sequence_input,mutation_range_start,mutation_range_end], | |
fn=clear_inputs | |
) | |
run_button.click( | |
fn=score_and_create_matrix_all_singles, | |
inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror,batch_size_inference], | |
outputs=[output_image,output_recommendations,output_csv_files], | |
) | |
gr.Markdown("# Mutate the starting protein sequence") | |
with gr.Row(): | |
mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)") | |
mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary") | |
mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence") | |
mutate_button.click( | |
fn = get_mutated_protein, | |
inputs = [protein_sequence_input,mutation_triplet], | |
outputs = mutated_protein_sequence | |
) | |
gr.Markdown("<p>You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.</p>") | |
gr.Markdown("### About BASIS-China iGEM Team") | |
gr.Markdown("We are a high school synthetic biology team participating in the International Genetically Engineered Machine (iGEM) competition. Our 2025 project focuses on protein engineering and computational biology applications. This Tranception deployment is part of our broader effort to make advanced protein design tools accessible to the synthetic biology community.") | |
gr.Markdown("### About Tranception") | |
gr.Markdown("<p><b>Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval</b><br>Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks<sup>*</sup>, Yarin Gal<sup>*</sup><br><sup>* equal senior authorship</sup></p>") | |
gr.Markdown("Links: <a href='https://proceedings.mlr.press/v162/notin22a.html' target='_blank'>Paper</a> <a href='https://github.com/OATML-Markslab/Tranception' target='_blank'>Code</a> <a href='https://sites.google.com/view/proteingym/substitutions' target='_blank'>ProteinGym</a> <a href='https://igem.org/teams/5247' target='_blank'>BASIS-China iGEM Team</a>") | |
if __name__ == "__main__": | |
# Configure queue for better resource management | |
tranception_design.queue( | |
max_size=10, # Limit queue size | |
status_update_rate="auto", # Show status updates | |
api_open=False # Disable API to prevent external requests | |
) | |
# Launch with settings optimized for HF Spaces | |
try: | |
tranception_design.launch( | |
max_threads=2, # Limit concurrent threads | |
show_error=True, | |
server_name="0.0.0.0", | |
server_port=7860, | |
quiet=False, # Show all logs | |
prevent_thread_lock=True # Prevent thread locking issues | |
) | |
except Exception as e: | |
print(f"Launch error: {e}") | |
# If launch fails, try again with minimal settings | |
tranception_design.launch() |