MoraxCheng commited on
Commit
a092fd7
·
1 Parent(s): 8640a78

Add debugging info and Zero GPU hardware suggestion

Browse files

- Add GPU availability debug prints
- Show GPU name and memory when available
- Add note about Zero GPU settings when running on CPU
- Add suggested_hardware: zero-a10g in README.md
- This helps diagnose why GPU is not being allocated

Files changed (2) hide show
  1. README.md +1 -0
  2. app.py +6 -1
README.md CHANGED
@@ -8,6 +8,7 @@ sdk_version: 5.34.2
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
11
  models:
12
  - PascalNotin/Tranception_Small
13
  - PascalNotin/Tranception_Medium
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
+ suggested_hardware: zero-a10g
12
  models:
13
  - PascalNotin/Tranception_Small
14
  - PascalNotin/Tranception_Medium
app.py CHANGED
@@ -268,16 +268,21 @@ def score_and_create_matrix_all_singles_impl(sequence,mutation_range_start=None,
268
  model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
269
 
270
  # Device selection - Zero GPU will provide CUDA when decorated with @spaces.GPU
 
271
  if torch.cuda.is_available():
272
  device = torch.device("cuda")
273
  model = model.to(device)
274
- print(f"Inference will take place on {torch.cuda.get_device_name(0)}")
 
 
 
275
  # Increase batch size for GPU inference
276
  batch_size_inference = min(batch_size_inference, 50)
277
  else:
278
  device = torch.device("cpu")
279
  model = model.to(device)
280
  print("Inference will take place on CPU")
 
281
  # Reduce batch size for CPU inference
282
  batch_size_inference = min(batch_size_inference, 10)
283
 
 
268
  model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path=model_path)
269
 
270
  # Device selection - Zero GPU will provide CUDA when decorated with @spaces.GPU
271
+ print(f"GPU Available: {torch.cuda.is_available()}")
272
  if torch.cuda.is_available():
273
  device = torch.device("cuda")
274
  model = model.to(device)
275
+ gpu_name = torch.cuda.get_device_name(0)
276
+ gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
277
+ print(f"Inference will take place on {gpu_name}")
278
+ print(f"GPU Memory: {gpu_memory:.2f} GB")
279
  # Increase batch size for GPU inference
280
  batch_size_inference = min(batch_size_inference, 50)
281
  else:
282
  device = torch.device("cpu")
283
  model = model.to(device)
284
  print("Inference will take place on CPU")
285
+ print("Note: If you expected GPU, ensure Zero GPU is enabled in Space settings")
286
  # Reduce batch size for CPU inference
287
  batch_size_inference = min(batch_size_inference, 10)
288