#!/usr/bin/env python3 """ Tranception Design App - Hugging Face Spaces Version (Zero GPU Fixed) """ import os import sys # Set up caching to avoid re-downloading models os.environ['HF_HOME'] = '/tmp/huggingface' os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface/transformers' os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets' # Ensure proper Hugging Face endpoint os.environ['HF_ENDPOINT'] = 'https://huggingface.co' # Disable offline mode to allow downloads os.environ['TRANSFORMERS_OFFLINE'] = '0' # Patch for transformers 4.17.0 URL issue in HF Spaces import urllib.parse import json import time def patch_transformers_url(): """Fix URL scheme issue in transformers 4.17.0 with comprehensive URL handling""" try: import transformers.file_utils import requests # Patch multiple functions for comprehensive URL fixing original_get_from_cache = transformers.file_utils.get_from_cache def patched_get_from_cache(url, *args, **kwargs): # Comprehensive URL fixing for various formats if isinstance(url, str): original_url = url # Handle different types of malformed URLs if url.startswith('/api/resolve-cache/') or url.startswith('/api/'): # Fix relative API URLs - ensure proper base URL url = 'https://huggingface.co' + url print(f"Fixed relative API URL: {original_url} -> {url}") elif url.startswith('//'): # Fix protocol-relative URLs url = 'https:' + url elif not url.startswith(('http://', 'https://')): # Handle other relative paths if url.startswith('/'): url = 'https://huggingface.co' + url else: url = 'https://huggingface.co/' + url # Additional validation and normalization try: parsed = urllib.parse.urlparse(url) if not parsed.netloc: # If no netloc found, construct proper URL url = 'https://huggingface.co' + ('/' + url if not url.startswith('/') else url) except Exception: # Fallback for URL parsing errors if not url.startswith('https://'): url = 'https://huggingface.co' + ('/' + url if not url.startswith('/') else url) # Add retry mechanism for network requests max_retries = 3 for attempt in range(max_retries): try: return original_get_from_cache(url, *args, **kwargs) except Exception as e: if attempt < max_retries - 1: print(f"Download attempt {attempt + 1} failed for {url}: {e}. Retrying...") time.sleep(2 ** attempt) # Exponential backoff continue else: print(f"All download attempts failed for {url}: {e}") raise # Also patch cached_path function which might be causing the issue if hasattr(transformers.file_utils, 'cached_path'): original_cached_path = transformers.file_utils.cached_path def patched_cached_path(url_or_filename, *args, **kwargs): if isinstance(url_or_filename, str): if url_or_filename.startswith('/api/resolve-cache/') or url_or_filename.startswith('/api/'): url_or_filename = 'https://huggingface.co' + url_or_filename print(f"Fixed cached_path URL: {url_or_filename}") return original_cached_path(url_or_filename, *args, **kwargs) transformers.file_utils.cached_path = patched_cached_path # Patch http_get function to handle malformed URLs at the lowest level if hasattr(transformers.file_utils, 'http_get'): original_http_get = transformers.file_utils.http_get def patched_http_get(url, *args, **kwargs): if isinstance(url, str): if url.startswith('/api/resolve-cache/') or url.startswith('/api/'): url = 'https://huggingface.co' + url print(f"Fixed http_get URL: {url}") return original_http_get(url, *args, **kwargs) transformers.file_utils.http_get = patched_http_get # Patch requests.get at the lowest level to catch any remaining malformed URLs original_requests_get = requests.get def patched_requests_get(url, *args, **kwargs): if isinstance(url, str): if url.startswith('/api/resolve-cache/') or url.startswith('/api/'): original_url = url url = 'https://huggingface.co' + url print(f"Fixed requests.get URL: {original_url} -> {url}") elif not url.startswith(('http://', 'https://', 'ftp://')): if url.startswith('/'): url = 'https://huggingface.co' + url print(f"Fixed relative URL in requests.get: {url}") return original_requests_get(url, *args, **kwargs) requests.get = patched_requests_get transformers.file_utils.get_from_cache = patched_get_from_cache print("Applied comprehensive URL patch for transformers and requests") except Exception as e: print(f"Warning: Could not patch transformers URL handling: {e}") import torch import transformers patch_transformers_url() from transformers import PreTrainedTokenizerFast import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import gradio as gr from huggingface_hub import hf_hub_download import shutil import uuid import gc import time import datetime import threading # Simplified Zero GPU handling try: import spaces SPACES_AVAILABLE = True print("Zero GPU support detected") except ImportError: SPACES_AVAILABLE = False print("Running without Zero GPU support") except Exception as e: # Catch any other initialization errors SPACES_AVAILABLE = False print(f"Zero GPU initialization warning: {e}") print("Running without Zero GPU support") # Runtime mode tracking RUNTIME_MODE = "GPU" if SPACES_AVAILABLE else "CPU" # Keep-alive state last_activity = datetime.datetime.now() activity_lock = threading.Lock() def update_activity(): """Update last activity timestamp""" global last_activity with activity_lock: last_activity = datetime.datetime.now() # Add current directory to path sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) # Check if we need to download and extract the tranception module if not os.path.exists("tranception"): print("Downloading Tranception repository...") try: # Clone the repository structure result = os.system("git clone https://github.com/OATML-Markslab/Tranception.git temp_tranception") if result != 0: raise Exception("Failed to clone Tranception repository") # Move the tranception module to current directory shutil.move("temp_tranception/tranception", "tranception") # Clean up shutil.rmtree("temp_tranception") except Exception as e: print(f"Error setting up Tranception: {e}") if os.path.exists("temp_tranception"): shutil.rmtree("temp_tranception") raise import tranception from tranception import config, model_pytorch # Model loading configuration MODEL_CACHE = {} def validate_cache_file(file_path, min_size=1000): """Validate cache file integrity and content""" if not os.path.exists(file_path): return False, "File does not exist" # Check file size try: file_size = os.path.getsize(file_path) if file_size < min_size: return False, f"File too small ({file_size} bytes < {min_size})" except Exception as e: return False, f"Cannot get file size: {e}" # Check if it's supposed to be a JSON file (config files) if file_path.endswith('.json') or 'config' in file_path.lower(): try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read().strip() if not content: return False, "Empty JSON file" json.loads(content) # Validate JSON syntax return True, "Valid JSON file" except json.JSONDecodeError: return False, "Invalid JSON content" except Exception as e: return False, f"Cannot read JSON file: {e}" return True, "File appears valid" def clean_corrupted_cache_files(cache_dir): """Clean corrupted or invalid cache files""" if not os.path.exists(cache_dir): return cleaned_count = 0 for file in os.listdir(cache_dir): filepath = os.path.join(cache_dir, file) if os.path.isfile(filepath): valid, reason = validate_cache_file(filepath) if not valid: try: os.remove(filepath) print(f"Removed corrupted cache file: {file} ({reason})") cleaned_count += 1 except Exception as e: print(f"Could not remove {file}: {e}") if cleaned_count > 0: print(f"Cleaned {cleaned_count} corrupted cache files") def get_model_path(model_name): """Get model path - always use HF Hub for Zero GPU spaces""" # In HF Spaces, models are cached automatically by the transformers library # Always return the HF Hub path to leverage this caching return f"PascalNotin/{model_name}" def load_model_direct(model_type): """Direct model loading with manual config handling""" import json import tempfile from transformers import AutoConfig print(f"Attempting direct load of {model_type} model...") # Create a proper config manually based on model type config_data = { "architectures": ["TranceptionLMHeadModel"], "model_type": "tranception", "_name_or_path": f"Tranception_{model_type}", "activation_function": "squared_relu", "attention_mode": "tranception", "attn_pdrop": 0.1, "embd_pdrop": 0.1, "initializer_range": 0.02, "layer_norm_epsilon": 1e-5, "n_embd": 768 if model_type == "Small" else (1024 if model_type == "Medium" else 1280), "n_head": 12 if model_type == "Small" else (16 if model_type == "Medium" else 20), "n_inner": None, "n_layer": 12 if model_type == "Small" else (24 if model_type == "Medium" else 30), "n_positions": 2048, "resid_pdrop": 0.1, "summary_activation": None, "summary_first_dropout": 0.1, "summary_proj_to_labels": True, "summary_type": "cls_index", "summary_use_proj": True, "vocab_size": 50257, "pad_token_id": 50256, "bos_token_id": 50256, "eos_token_id": 50256 } # Save config to temp file with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f: json.dump(config_data, f) config_path = f.name try: # Load config from temp file try: config = AutoConfig.from_pretrained(config_path) except Exception: # Try without trust_remote_code config = AutoConfig.from_pretrained(config_path) # Load model with manual config try: model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained( f"PascalNotin/Tranception_{model_type}", config=config, ignore_mismatched_sizes=True ) except TypeError: # Fallback without newer parameters model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained( f"PascalNotin/Tranception_{model_type}", config=config ) os.unlink(config_path) # Clean up temp file return model except Exception as e: print(f"Direct load failed: {e}") if os.path.exists(config_path): os.unlink(config_path) raise def load_model_cached(model_type): """Load model with caching to avoid re-downloading""" global MODEL_CACHE # Check if model is already in cache if model_type in MODEL_CACHE: print(f"Using cached {model_type} model") return MODEL_CACHE[model_type] print(f"Loading {model_type} model...") model_name = f"Tranception_{model_type}" model_path = get_model_path(model_name) try: # Enhanced cache cleaning with validation import shutil cache_dir = "/tmp/huggingface/transformers" os.makedirs(cache_dir, exist_ok=True) # Clean corrupted cache files using the new validation system print("Validating and cleaning cache files...") clean_corrupted_cache_files(cache_dir) # Enhanced environment setup for robust model loading os.environ["HF_ENDPOINT"] = "https://huggingface.co" os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" os.environ["HF_HUB_DISABLE_EXPERIMENTAL_WARNING"] = "1" # Try loading without trust_remote_code first (compatibility issue) try: model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained( model_path, cache_dir=cache_dir, force_download=True, resume_download=False ) except Exception as e1: print(f"Loading without trust_remote_code failed: {e1}") # Fallback: try with trust_remote_code for older transformers versions try: model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained( model_path, cache_dir=cache_dir, force_download=True, trust_remote_code=True, resume_download=False ) except Exception as e2: print(f"Loading with trust_remote_code also failed: {e2}") raise e1 # Raise the original exception MODEL_CACHE[model_type] = model print(f"{model_type} model loaded and cached") return model except Exception as e: print(f"Error loading {model_type} model: {e}") print(f"Error type: {type(e).__name__}") if hasattr(e, '__cause__') and e.__cause__: print(f"Root cause: {e.__cause__}") print(f"Model path used: {model_path}") print(f"Cache directory: {cache_dir}") print(f"Attempting alternative loading method...") # Try alternative loading approach with full URL try: # Use full URL to bypass any path resolution issues full_url = f"https://huggingface.co/PascalNotin/Tranception_{model_type}" try: model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained( full_url, cache_dir=cache_dir ) except TypeError: # Try without trust_remote_code if it's not supported model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained( full_url, cache_dir=cache_dir ) MODEL_CACHE[model_type] = model print(f"{model_type} model loaded successfully with full URL") return model except Exception as e2: print(f"Alternative loading also failed: {e2}") # Final attempt: use AutoModel with manual config try: import json import requests from transformers import AutoConfig, AutoModel print(f"Attempting to load with AutoModel...") # Clear cache and try with AutoModel which handles config better cache_dir_auto = "/tmp/huggingface/auto" os.makedirs(cache_dir_auto, exist_ok=True) # Try direct loading with manual config model = load_model_direct(model_type) MODEL_CACHE[model_type] = model print(f"{model_type} model loaded successfully with AutoConfig") return model except Exception as e3: print(f"AutoModel loading also failed: {e3}") # Fallback to Medium if requested model fails if model_type == "Large": print("Falling back to Medium model...") return load_model_cached("Medium") elif model_type == "Medium": print("Medium model failed, trying Small model...") # Try Small model as last resort try: try: model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained( "PascalNotin/Tranception_Small", force_download=True, cache_dir="/tmp/huggingface/small" ) except TypeError: model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained( "PascalNotin/Tranception_Small", force_download=True, cache_dir="/tmp/huggingface/small" ) MODEL_CACHE["Small"] = model print("Small model loaded as fallback") return model except Exception as e_small: print(f"Small model also failed: {e_small}") raise RuntimeError("Failed to load any Tranception model") else: raise RuntimeError(f"Failed to load {model_type} model") AA_vocab = "ACDEFGHIKLMNPQRSTVWY" tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]" ) def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None): all_single_mutants={} sequence_list=list(sequence) if mutation_range_start is None: mutation_range_start=1 if mutation_range_end is None: mutation_range_end=len(sequence) for position,current_AA in enumerate(sequence[mutation_range_start-1:mutation_range_end]): for mutated_AA in AA_vocab: if current_AA!=mutated_AA: mutated_sequence = sequence_list.copy() mutated_sequence[mutation_range_start + position - 1] = mutated_AA all_single_mutants[current_AA+str(mutation_range_start+position)+mutated_AA]="".join(mutated_sequence) all_single_mutants = pd.DataFrame.from_dict(all_single_mutants,columns=['mutated_sequence'],orient='index') all_single_mutants.reset_index(inplace=True) all_single_mutants.columns = ['mutant','mutated_sequence'] return all_single_mutants def create_scoring_matrix_visual(scores,sequence,image_index=0,mutation_range_start=None,mutation_range_end=None,AA_vocab=AA_vocab,annotate=True,fontsize=20,unique_id=None): if unique_id is None: unique_id = str(uuid.uuid4()) filtered_scores=scores.copy() filtered_scores=filtered_scores[filtered_scores.position.isin(range(mutation_range_start,mutation_range_end+1))] piv=filtered_scores.pivot(index='position',columns='target_AA',values='avg_score').round(4) # Calculate mutation range length mutation_range_len = mutation_range_end - mutation_range_start + 1 # Save CSV file csv_path = 'fitness_scoring_substitution_matrix_{}_{}.csv'.format(unique_id, image_index) # Create a more detailed CSV with mutation info csv_data = [] for position in range(mutation_range_start,mutation_range_end+1): for target_AA in list(AA_vocab): mutant = sequence[position-1]+str(position)+target_AA if mutant in set(filtered_scores.mutant): score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score'] if isinstance(score_value, pd.Series): score = float(score_value.iloc[0]) else: score = float(score_value) else: score = 0.0 csv_data.append({ 'position': position, 'original_AA': sequence[position-1], 'target_AA': target_AA, 'mutation': mutant, 'fitness_score': score }) csv_df = pd.DataFrame(csv_data) csv_df.to_csv(csv_path, index=False) # Continue with visualization # Use large fixed width for clarity, height scales with positions (as in reference) fig, ax = plt.subplots(figsize=(50, mutation_range_len)) scores_dict = {} valid_mutant_set=set(filtered_scores.mutant) ax.tick_params(bottom=True, top=True, left=True, right=True) ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True) if annotate: for position in range(mutation_range_start,mutation_range_end+1): for target_AA in list(AA_vocab): mutant = sequence[position-1]+str(position)+target_AA if mutant in valid_mutant_set: score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score'] if isinstance(score_value, pd.Series): scores_dict[mutant] = float(score_value.iloc[0]) else: scores_dict[mutant] = float(score_value) else: scores_dict[mutant]=0.0 # Format labels as in reference - always show mutation and score with 4 decimal places labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_len,len(AA_vocab)) heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\ cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize}) else: heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\ cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize}) # Use label sizes from reference heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5)) heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40) heat.set_ylabel("Sequence position", fontsize = fontsize*2) heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2) # Set y-axis labels (positions) yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)] heat.set_yticklabels(yticklabels, fontsize=fontsize, rotation=0) # Set x-axis labels (amino acids) - ensuring correct number heat.set_xticklabels(list(AA_vocab), fontsize=fontsize) try: plt.tight_layout() image_path = 'fitness_scoring_substitution_matrix_{}_{}.png'.format(unique_id, image_index) plt.savefig(image_path, dpi=100) return image_path, csv_path finally: plt.close('all') # Ensure all figures are closed plt.clf() # Clear the current figure plt.cla() # Clear the current axes def suggest_mutations(scores): intro_message = "The following mutations may be sensible options to improve fitness: \n\n" #Best mutants top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant) top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score) top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)] mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos)) #Best positions positive_scores = scores[scores.avg_score > 0] if len(positive_scores) > 0: # Only select numeric columns for groupby mean positive_scores_position_avg = positive_scores.groupby(['position'])['avg_score'].mean().reset_index() top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5)['position'].astype(str)) position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions)) else: position_recos = "No positions with positive fitness effects found." return intro_message+mutant_recos+position_recos def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab): valid = True try: from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1] except: valid = False if valid and position > 0 and position <= len(sequence): if sequence[position-1]!=from_AA: valid=False else: valid = False if to_AA not in AA_vocab: valid=False return valid def cleanup_old_files(max_age_minutes=30): """Clean up old inference files""" import glob current_time = time.time() patterns = ["fitness_scoring_substitution_matrix_*.png", "fitness_scoring_substitution_matrix_*.csv", "all_mutations_fitness_scores_*.csv"] cleaned_count = 0 for pattern in patterns: for file_path in glob.glob(pattern): try: file_age = current_time - os.path.getmtime(file_path) if file_age > max_age_minutes * 60: os.remove(file_path) cleaned_count += 1 except Exception as e: # Log error but continue cleaning other files print(f"Warning: Could not remove {file_path}: {e}") if cleaned_count > 0: print(f"Cleaned up {cleaned_count} old files") def get_mutated_protein(sequence,mutant): if not check_valid_mutant(sequence,mutant): return "The mutant is not valid" mutated_sequence = list(sequence) mutated_sequence[int(mutant[1:-1])-1]=mutant[-1] return ''.join(mutated_sequence) def score_and_create_matrix_all_singles_impl(sequence,mutation_range_start=None,mutation_range_end=None,model_type="Large",scoring_mirror=False,batch_size_inference=20,max_number_positions_per_heatmap=50,num_workers=0,AA_vocab=AA_vocab): # Update activity update_activity() # Clean up old files periodically cleanup_old_files() # Generate unique ID for this request unique_id = str(uuid.uuid4()) if mutation_range_start is None: mutation_range_start=1 if mutation_range_end is None: mutation_range_end=len(sequence) # Clean sequence sequence = sequence.strip().upper() # Validate assert len(sequence) > 0, "no sequence entered" assert mutation_range_start <= mutation_range_end, "mutation range is invalid" assert mutation_range_end <= len(sequence), f"End position ({mutation_range_end}) exceeds sequence length ({len(sequence)})" # Load model with caching model = load_model_cached(model_type) # Move model to appropriate device INSIDE the GPU decorated function # This is crucial for Zero GPU - the model must be moved to GPU inside the decorated function # Device selection - Zero GPU will provide CUDA when decorated with @spaces.GPU print(f"GPU Available: {torch.cuda.is_available()}") if torch.cuda.is_available(): device = torch.device("cuda") model = model.to(device) gpu_name = torch.cuda.get_device_name(0) gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3 print(f"Inference will take place on {gpu_name}") print(f"GPU Memory: {gpu_memory:.2f} GB") # Increase batch size for GPU inference batch_size_inference = min(batch_size_inference, 50) else: device = torch.device("cpu") model = model.to(device) print("Inference will take place on CPU") # Reduce batch size for CPU inference batch_size_inference = min(batch_size_inference, 10) try: model.eval() model.config.tokenizer = tokenizer all_single_mutants = create_all_single_mutants(sequence,AA_vocab,mutation_range_start,mutation_range_end) with torch.no_grad(): scores = model.score_mutants(DMS_data=all_single_mutants, target_seq=sequence, scoring_mirror=scoring_mirror, batch_size_inference=batch_size_inference, num_workers=num_workers, indel_mode=False ) scores = pd.merge(scores,all_single_mutants,on="mutated_sequence",how="left") scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1])) scores["target_AA"] = scores["mutant"].map(lambda x: x[-1]) score_heatmaps = [] csv_files = [] mutation_range = mutation_range_end - mutation_range_start + 1 number_heatmaps = int((mutation_range - 1) / max_number_positions_per_heatmap) + 1 image_index = 0 window_start = mutation_range_start window_end = min(mutation_range_end,mutation_range_start+max_number_positions_per_heatmap-1) for image_index in range(number_heatmaps): image_path, csv_path = create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab,unique_id=unique_id) score_heatmaps.append(image_path) csv_files.append(csv_path) window_start += max_number_positions_per_heatmap window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1) # Also save a comprehensive CSV with all mutations comprehensive_csv_path = 'all_mutations_fitness_scores_{}.csv'.format(unique_id) scores_export = scores[['mutant', 'position', 'target_AA', 'avg_score', 'mutated_sequence']].copy() scores_export['original_AA'] = scores_export['mutant'].str[0] scores_export = scores_export.rename(columns={'avg_score': 'fitness_score'}) scores_export = scores_export[['position', 'original_AA', 'target_AA', 'mutant', 'fitness_score', 'mutated_sequence']] scores_export.to_csv(comprehensive_csv_path, index=False) csv_files.append(comprehensive_csv_path) return score_heatmaps, suggest_mutations(scores), csv_files finally: # Clean up GPU memory but keep model in cache # Move model back to CPU to free GPU memory if 'model' in locals(): model.cpu() if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() # Apply Zero GPU decorator if available if SPACES_AVAILABLE: try: score_and_create_matrix_all_singles = spaces.GPU(duration=420)(score_and_create_matrix_all_singles_impl) except Exception as e: print(f"Warning: Could not apply Zero GPU decorator: {e}") print("Falling back to CPU mode") score_and_create_matrix_all_singles = score_and_create_matrix_all_singles_impl else: score_and_create_matrix_all_singles = score_and_create_matrix_all_singles_impl def extract_sequence(protein_id, taxon, sequence): return sequence def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end): protein_sequence_input = "" mutation_range_start = None mutation_range_end = None return protein_sequence_input,mutation_range_start,mutation_range_end # Create Gradio app tranception_design = gr.Blocks() with tranception_design: gr.Markdown("# In silico directed evolution for protein redesign with Tranception") gr.Markdown("## 🧬 BASIS-China iGEM Team 2025 - Protein Engineering Platform") gr.Markdown("### Welcome to BASIS-China's implementation of Tranception on Hugging Face Spaces!") gr.Markdown("We are the BASIS-China iGEM team, and we're excited to present our deployment of the Tranception model for protein fitness prediction. This tool enables in silico directed evolution to iteratively improve protein fitness through single amino acid substitutions. At each step, Tranception computes log likelihood ratios for all possible mutations compared to the starting sequence, generating fitness heatmaps and recommendations to guide protein engineering.") gr.Markdown("**Technical Details**: This deployment leverages Hugging Face's Zero GPU infrastructure, which dynamically allocates H200 GPU resources when available. This allows for efficient inference while managing computational resources effectively.") # Hidden keep-alive component with gr.Row(visible=False): keep_alive_component = gr.Number(value=0, visible=False) def keep_alive_update(): update_activity() return time.time() # Update every 2 minutes to keep websocket alive keep_alive_timer = gr.Timer(value=120) keep_alive_timer.tick(keep_alive_update, outputs=[keep_alive_component]) # Status indicator with gr.Row(): with gr.Column(scale=1): def get_gpu_status(): global RUNTIME_MODE with activity_lock: time_since = (datetime.datetime.now() - last_activity).total_seconds() if RUNTIME_MODE == "GPU": status = "🔥 Zero GPU" else: status = "💻 CPU Mode (GPU initialization failed)" return f"{status} | Last activity: {int(time_since)}s ago" gpu_status = gr.Textbox( label="Compute Status", value=get_gpu_status, every=5, # Update every 5 seconds interactive=False, elem_id="gpu_status" ) with gr.Tabs(): with gr.TabItem("Input"): with gr.Row(): protein_sequence_input = gr.Textbox(lines=1, label="Protein sequence", placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)" ) with gr.Row(): mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)", value=1, precision=0) mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)", value=10, precision=0) with gr.TabItem("Parameters"): with gr.Row(): model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)", choices=["Small","Medium","Large"], value="Small") with gr.Row(): scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)") with gr.Row(): batch_size_inference = gr.Number(label="Model batch size at inference time (reduce for CPU)",value = 10, precision=0) with gr.Row(): gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.") with gr.Row(): clear_button = gr.Button(value="Clear",variant="secondary") run_button = gr.Button(value="Predict fitness",variant="primary") protein_ID = gr.Textbox(label="Uniprot ID", visible=False) taxon = gr.Textbox(label="Taxon", visible=False) examples = gr.Examples( inputs=[protein_ID, taxon, protein_sequence_input], outputs=[protein_sequence_input], fn=extract_sequence, examples=[ ['ADRB2_HUMAN' ,'Human', 'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'], ['IF1_ECOLI' ,'Prokaryote', 'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'], ['P53_HUMAN' ,'Human', 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'], ['BLAT_ECOLX' ,'Prokaryote', 'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'], ['BRCA1_HUMAN' ,'Human', 'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'], ['CALM1_HUMAN' ,'Human', 'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'], ['CCDB_ECOLI' ,'Prokaryote', 'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'], ['GFP_AEQVI' ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'], ['GRB2_HUMAN' ,'Human', 'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'], ], ) gr.Markdown("
") gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range") gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones") output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range") #Using Gallery to break down large scoring matrices into smaller images output_recommendations = gr.Textbox(label="Mutation recommendations") with gr.Row(): gr.Markdown("## Download CSV Files") output_csv_files = gr.File(label="Download CSV files with fitness scores", file_count="multiple", interactive=False) clear_button.click( inputs = [protein_sequence_input,mutation_range_start,mutation_range_end], outputs = [protein_sequence_input,mutation_range_start,mutation_range_end], fn=clear_inputs ) run_button.click( fn=score_and_create_matrix_all_singles, inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror,batch_size_inference], outputs=[output_image,output_recommendations,output_csv_files], ) gr.Markdown("# Mutate the starting protein sequence") with gr.Row(): mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)") mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary") mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence") mutate_button.click( fn = get_mutated_protein, inputs = [protein_sequence_input,mutation_triplet], outputs = mutated_protein_sequence ) gr.Markdown("

You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.

") gr.Markdown("### About BASIS-China iGEM Team") gr.Markdown("We are a high school synthetic biology team participating in the International Genetically Engineered Machine (iGEM) competition. Our 2025 project focuses on protein engineering and computational biology applications. This Tranception deployment is part of our broader effort to make advanced protein design tools accessible to the synthetic biology community.") gr.Markdown("### About Tranception") gr.Markdown("

Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval
Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks*, Yarin Gal*
* equal senior authorship

") gr.Markdown("Links: Paper Code ProteinGym BASIS-China iGEM Team") if __name__ == "__main__": # Don't preload models at startup - this can cause Zero GPU initialization issues # Models will be loaded and cached on first use print("Starting Tranception app...") print("Note: Models will be downloaded on first use") print("Zero GPU spaces may sleep after ~15 minutes of inactivity") # Try to launch with ZeroGPU support first launch_success = False max_retries = 3 retry_count = 0 while not launch_success and retry_count < max_retries: try: if retry_count > 0: print(f"Retry attempt {retry_count}/{max_retries}...") time.sleep(2) # Wait before retry # Launch with queue for proper Zero GPU support tranception_design.queue(max_size=20).launch( server_name="0.0.0.0", server_port=7860, show_error=True, share=False ) launch_success = True except RuntimeError as e: if "Error while initializing ZeroGPU" in str(e): retry_count += 1 if retry_count >= max_retries: print(f"ZeroGPU initialization failed after {max_retries} attempts") print("Falling back to CPU mode for stability") print("Note: The app will run slower in CPU mode") # Update runtime mode RUNTIME_MODE = "CPU" # Launch without queue which doesn't trigger ZeroGPU initialization tranception_design.launch( server_name="0.0.0.0", server_port=7860, show_error=True, share=False ) launch_success = True else: # Re-raise unexpected errors raise