import gradio as gr """ import pathlib from huggingface_hub import hf_hub_download from llama_cpp import Llama """ from sentence_transformers import SentenceTransformer import faiss import numpy as np import pandas as pd ## LLMの読み込み(Qwen2.5-3Bをsafetensorsで読み込み) from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "Qwen/Qwen2.5-3B" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) llm = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16) llm.eval() """ ## LLMの読み込み models_dir = pathlib.Path(__file__).parent / "models" models_dir.mkdir(exist_ok=True) model_path = hf_hub_download( repo_id="Mori-kamiyama/sarashina2-13b-r1", filename="model.gguf", local_dir=models_dir ) llm = Llama(model_path=model_path) """ ## 埋め込みモデルの読み込み model = SentenceTransformer("BAAI/bge-m3") # ドキュメントの読み込み df = pd.read_csv("document.csv") # "text"カラムをリストとして抽出 texts = df['text'].tolist() # ベクトル化 doc_embeddings = model.encode(texts, normalize_embeddings=True) # FAISSのセットアップ dimension = doc_embeddings.shape[1] index = faiss.IndexFlatIP(dimension) # Cosine用にnormalize済ならこれ index.add(np.array(doc_embeddings)) def generate_text(prompt): result = llm(search(prompt)) return result['choices'][0]['text'] def search(query): query_embedding = model.encode([query], normalize_embeddings=True) # FAISSで検索 top_k = 2 D, I = index.search(np.array(query_embedding), top_k) retrieved_docs = [] print("\n🔍 検索結果:") for idx in I[0]: doc_text = texts[idx] retrieved_docs.append(doc_text) print(f"→ {doc_text}") # RAG用のプロンプトを作成 prompt = "以下の文書を参照して質問に答えてください。\n\n文書:\n" prompt += "\n".join(retrieved_docs) prompt += f"\n\n質問: {query}" return prompt iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="sarashina-R13B-RAG") iface.launch()