Spaces:
Sleeping
Sleeping
Update scripts/demo.py
Browse files- scripts/demo.py +72 -161
scripts/demo.py
CHANGED
@@ -1,74 +1,57 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
|
4 |
-
|
|
|
5 |
sys.path.append(os.getcwd())
|
6 |
|
|
|
|
|
|
|
|
|
7 |
from transformers import Wav2Vec2Processor
|
8 |
from glob import glob
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
import json
|
12 |
-
import smplx as smpl
|
13 |
|
14 |
from nets import *
|
15 |
from trainer.options import parse_args
|
16 |
from data_utils import torch_data
|
17 |
from trainer.config import load_JsonConfig
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn as nn
|
21 |
import torch.nn.functional as F
|
22 |
from torch.utils import data
|
23 |
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
|
24 |
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
|
25 |
from visualise.rendering import RenderTool
|
26 |
|
27 |
-
|
|
|
28 |
device = 'cpu'
|
29 |
|
30 |
def init_model(model_name, model_path, args, config):
|
31 |
if model_name == 's2g_face':
|
32 |
-
generator = s2g_face(
|
33 |
-
args,
|
34 |
-
config,
|
35 |
-
)
|
36 |
elif model_name == 's2g_body_vq':
|
37 |
-
generator = s2g_body_vq(
|
38 |
-
args,
|
39 |
-
config,
|
40 |
-
)
|
41 |
elif model_name == 's2g_body_pixel':
|
42 |
-
generator = s2g_body_pixel(
|
43 |
-
args,
|
44 |
-
config,
|
45 |
-
)
|
46 |
elif model_name == 's2g_LS3DCG':
|
47 |
-
generator = LS3DCG(
|
48 |
-
args,
|
49 |
-
config,
|
50 |
-
)
|
51 |
else:
|
52 |
raise NotImplementedError
|
53 |
|
54 |
model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
|
55 |
if model_name == 'smplx_S2G':
|
56 |
generator.generator.load_state_dict(model_ckpt['generator']['generator'])
|
57 |
-
|
58 |
elif 'generator' in list(model_ckpt.keys()):
|
59 |
generator.load_state_dict(model_ckpt['generator'])
|
60 |
else:
|
61 |
model_ckpt = {'generator': model_ckpt}
|
62 |
generator.load_state_dict(model_ckpt)
|
63 |
|
64 |
-
return generator
|
65 |
-
|
66 |
|
67 |
def init_dataloader(data_root, speakers, args, config):
|
68 |
-
|
69 |
-
raise NotImplementedError
|
70 |
-
else:
|
71 |
-
data_class = torch_data
|
72 |
if 'smplx' in config.Model.model_name or 's2g' in config.Model.model_name:
|
73 |
data_base = torch_data(
|
74 |
data_root=data_root,
|
@@ -91,26 +74,13 @@ def init_dataloader(data_root, speakers, args, config):
|
|
91 |
config=config
|
92 |
)
|
93 |
else:
|
94 |
-
|
95 |
-
|
96 |
-
speakers=speakers,
|
97 |
-
split='val',
|
98 |
-
limbscaling=False,
|
99 |
-
normalization=config.Data.pose.normalization,
|
100 |
-
norm_method=config.Data.pose.norm_method,
|
101 |
-
split_trans_zero=False,
|
102 |
-
num_pre_frames=config.Data.pose.pre_pose_length,
|
103 |
-
aud_feat_win_size=config.Data.aud.aud_feat_win_size,
|
104 |
-
aud_feat_dim=config.Data.aud.aud_feat_dim,
|
105 |
-
feat_method=config.Data.aud.feat_method
|
106 |
-
)
|
107 |
if config.Data.pose.normalization:
|
108 |
norm_stats_fn = os.path.join(os.path.dirname(args.model_path), "norm_stats.npy")
|
109 |
norm_stats = np.load(norm_stats_fn, allow_pickle=True)
|
110 |
data_base.data_mean = norm_stats[0]
|
111 |
data_base.data_std = norm_stats[1]
|
112 |
-
else:
|
113 |
-
norm_stats = None
|
114 |
|
115 |
data_base.get_dataset()
|
116 |
infer_set = data_base.all_dataset
|
@@ -118,69 +88,49 @@ def init_dataloader(data_root, speakers, args, config):
|
|
118 |
|
119 |
return infer_set, infer_loader, norm_stats
|
120 |
|
121 |
-
|
122 |
def get_vertices(smplx_model, betas, result_list, exp, require_pose=False):
|
123 |
vertices_list = []
|
124 |
-
poses_list = []
|
125 |
expression = torch.zeros([1, 50])
|
126 |
|
127 |
for i in result_list:
|
128 |
vertices = []
|
129 |
-
poses = []
|
130 |
for j in range(i.shape[0]):
|
131 |
-
output = smplx_model(
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
141 |
vertices.append(output.vertices.detach().cpu().numpy().squeeze())
|
142 |
-
|
143 |
-
|
144 |
-
poses.append(pose.detach().cpu())
|
145 |
-
vertices = np.asarray(vertices)
|
146 |
-
vertices_list.append(vertices)
|
147 |
-
poses = torch.cat(poses, dim=0)
|
148 |
-
poses_list.append(poses)
|
149 |
-
if require_pose:
|
150 |
-
return vertices_list, poses_list
|
151 |
-
else:
|
152 |
-
return vertices_list, None
|
153 |
-
|
154 |
|
155 |
global_orient = torch.tensor([3.0747, -0.0158, -0.0152])
|
156 |
|
157 |
-
|
158 |
def infer(g_body, g_face, smplx_model, rendertool, config, args):
|
159 |
-
betas = torch.zeros([1, 300], dtype=torch.float64).to(
|
160 |
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
|
161 |
am_sr = 16000
|
162 |
-
num_sample = args.num_sample
|
163 |
cur_wav_file = args.audio_file
|
164 |
id = args.id
|
165 |
face = args.only_face
|
166 |
stand = args.stand
|
|
|
|
|
167 |
if face:
|
168 |
-
body_static = torch.zeros([1, 162], device=
|
169 |
-
body_static[:, 6:9] =
|
170 |
|
171 |
result_list = []
|
172 |
|
173 |
-
pred_face = g_face.infer_on_audio(cur_wav_file,
|
174 |
-
|
175 |
-
norm_stats=None,
|
176 |
-
w_pre=False,
|
177 |
-
# id=id,
|
178 |
-
frame=None,
|
179 |
-
am=am,
|
180 |
-
am_sr=am_sr
|
181 |
-
)
|
182 |
-
pred_face = torch.tensor(pred_face).squeeze().to(device)
|
183 |
-
# pred_face = torch.zeros([gt.shape[0], 105])
|
184 |
|
185 |
if config.Data.pose.convert_to_6d:
|
186 |
pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6)
|
@@ -190,19 +140,11 @@ def infer(g_body, g_face, smplx_model, rendertool, config, args):
|
|
190 |
pred_jaw = pred_face[:, :3]
|
191 |
pred_face = pred_face[:, 3:]
|
192 |
|
193 |
-
id = torch.tensor([id], device=
|
194 |
|
195 |
for i in range(num_sample):
|
196 |
-
pred_res = g_body.infer_on_audio(cur_wav_file,
|
197 |
-
|
198 |
-
norm_stats=None,
|
199 |
-
txgfile=None,
|
200 |
-
id=id,
|
201 |
-
var=None,
|
202 |
-
fps=30,
|
203 |
-
w_pre=False
|
204 |
-
)
|
205 |
-
pred = torch.tensor(pred_res).squeeze().to(device)
|
206 |
|
207 |
if pred.shape[0] < pred_face.shape[0]:
|
208 |
repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
|
@@ -210,95 +152,64 @@ def infer(g_body, g_face, smplx_model, rendertool, config, args):
|
|
210 |
else:
|
211 |
pred = pred[:pred_face.shape[0], :]
|
212 |
|
213 |
-
body_or_face = False
|
214 |
-
if pred.shape[1] < 275:
|
215 |
-
body_or_face = True
|
216 |
if config.Data.pose.convert_to_6d:
|
217 |
pred = pred.reshape(pred.shape[0], -1, 6)
|
218 |
-
pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred))
|
219 |
-
pred = pred.reshape(pred.shape[0], -1)
|
220 |
-
|
221 |
-
if config.Model.model_name == 's2g_LS3DCG':
|
222 |
-
pred = torch.cat([pred[:, :3], pred[:, 103:], pred[:, 3:103]], dim=-1)
|
223 |
-
else:
|
224 |
-
pred = torch.cat([pred_jaw, pred, pred_face], dim=-1)
|
225 |
|
226 |
-
|
227 |
pred = part2full(pred, stand)
|
228 |
if face:
|
229 |
pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)
|
230 |
-
# result_list[0] = poses2pred(result_list[0], stand)
|
231 |
-
# if gt_0 is None:
|
232 |
-
# gt_0 = gt
|
233 |
-
# pred = pred2poses(pred, gt_0)
|
234 |
-
# result_list[0] = poses2poses(result_list[0], gt_0)
|
235 |
|
236 |
result_list.append(pred)
|
237 |
|
238 |
-
|
239 |
vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)
|
240 |
-
|
241 |
result_list = [res.to('cpu') for res in result_list]
|
242 |
-
dict = np.concatenate(result_list
|
243 |
-
file_name = 'visualise/video/' + config.Log.name + '/' +
|
244 |
-
cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1]
|
245 |
np.save(file_name, dict)
|
246 |
|
247 |
rendertool._render_sequences(cur_wav_file, vertices_list, stand=stand, face=face, whole_body=args.whole_body)
|
248 |
|
249 |
-
|
250 |
def main():
|
251 |
parser = parse_args()
|
252 |
args = parser.parse_args()
|
253 |
-
args.config_file = './config/body_pixel.json'
|
254 |
-
# device = torch.device(args.gpu)
|
255 |
-
# torch.cuda.set_device(device)
|
256 |
|
|
|
|
|
257 |
|
258 |
config = load_JsonConfig(args.config_file)
|
259 |
|
260 |
-
face_model_name = args.face_model_name
|
261 |
-
face_model_path = args.face_model_path
|
262 |
-
body_model_name = args.body_model_name
|
263 |
-
body_model_path = args.body_model_path
|
264 |
-
smplx_path = './visualise/'
|
265 |
-
|
266 |
-
os.environ['smplx_npz_path'] = config.smplx_npz_path
|
267 |
-
os.environ['extra_joint_path'] = config.extra_joint_path
|
268 |
-
os.environ['j14_regressor_path'] = config.j14_regressor_path
|
269 |
-
|
270 |
print('init model...')
|
271 |
-
generator = init_model(body_model_name, body_model_path, args, config)
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
smplx_model = smpl.create(**model_params).to(device)
|
297 |
print('init rendertool...')
|
298 |
rendertool = RenderTool('visualise/video/' + config.Log.name)
|
299 |
|
300 |
infer(generator, generator_face, smplx_model, rendertool, config, args)
|
301 |
|
302 |
-
|
303 |
if __name__ == '__main__':
|
304 |
main()
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
+
|
4 |
+
# Force CPU-only for Hugging Face (no CUDA)
|
5 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
6 |
sys.path.append(os.getcwd())
|
7 |
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import smplx as smpl
|
11 |
+
|
12 |
from transformers import Wav2Vec2Processor
|
13 |
from glob import glob
|
|
|
|
|
14 |
import json
|
|
|
15 |
|
16 |
from nets import *
|
17 |
from trainer.options import parse_args
|
18 |
from data_utils import torch_data
|
19 |
from trainer.config import load_JsonConfig
|
|
|
|
|
|
|
20 |
import torch.nn.functional as F
|
21 |
from torch.utils import data
|
22 |
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
|
23 |
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
|
24 |
from visualise.rendering import RenderTool
|
25 |
|
26 |
+
# Global forced device
|
27 |
+
torch_device = torch.device('cpu')
|
28 |
device = 'cpu'
|
29 |
|
30 |
def init_model(model_name, model_path, args, config):
|
31 |
if model_name == 's2g_face':
|
32 |
+
generator = s2g_face(args, config)
|
|
|
|
|
|
|
33 |
elif model_name == 's2g_body_vq':
|
34 |
+
generator = s2g_body_vq(args, config)
|
|
|
|
|
|
|
35 |
elif model_name == 's2g_body_pixel':
|
36 |
+
generator = s2g_body_pixel(args, config)
|
|
|
|
|
|
|
37 |
elif model_name == 's2g_LS3DCG':
|
38 |
+
generator = LS3DCG(args, config)
|
|
|
|
|
|
|
39 |
else:
|
40 |
raise NotImplementedError
|
41 |
|
42 |
model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
|
43 |
if model_name == 'smplx_S2G':
|
44 |
generator.generator.load_state_dict(model_ckpt['generator']['generator'])
|
|
|
45 |
elif 'generator' in list(model_ckpt.keys()):
|
46 |
generator.load_state_dict(model_ckpt['generator'])
|
47 |
else:
|
48 |
model_ckpt = {'generator': model_ckpt}
|
49 |
generator.load_state_dict(model_ckpt)
|
50 |
|
51 |
+
return generator.to(torch_device)
|
|
|
52 |
|
53 |
def init_dataloader(data_root, speakers, args, config):
|
54 |
+
data_class = torch_data
|
|
|
|
|
|
|
55 |
if 'smplx' in config.Model.model_name or 's2g' in config.Model.model_name:
|
56 |
data_base = torch_data(
|
57 |
data_root=data_root,
|
|
|
74 |
config=config
|
75 |
)
|
76 |
else:
|
77 |
+
raise NotImplementedError
|
78 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
if config.Data.pose.normalization:
|
80 |
norm_stats_fn = os.path.join(os.path.dirname(args.model_path), "norm_stats.npy")
|
81 |
norm_stats = np.load(norm_stats_fn, allow_pickle=True)
|
82 |
data_base.data_mean = norm_stats[0]
|
83 |
data_base.data_std = norm_stats[1]
|
|
|
|
|
84 |
|
85 |
data_base.get_dataset()
|
86 |
infer_set = data_base.all_dataset
|
|
|
88 |
|
89 |
return infer_set, infer_loader, norm_stats
|
90 |
|
|
|
91 |
def get_vertices(smplx_model, betas, result_list, exp, require_pose=False):
|
92 |
vertices_list = []
|
|
|
93 |
expression = torch.zeros([1, 50])
|
94 |
|
95 |
for i in result_list:
|
96 |
vertices = []
|
|
|
97 |
for j in range(i.shape[0]):
|
98 |
+
output = smplx_model(
|
99 |
+
betas=betas,
|
100 |
+
expression=i[j][165:265].unsqueeze_(dim=0) if exp else expression,
|
101 |
+
jaw_pose=i[j][0:3].unsqueeze_(dim=0),
|
102 |
+
leye_pose=i[j][3:6].unsqueeze_(dim=0),
|
103 |
+
reye_pose=i[j][6:9].unsqueeze_(dim=0),
|
104 |
+
global_orient=i[j][9:12].unsqueeze_(dim=0),
|
105 |
+
body_pose=i[j][12:75].unsqueeze_(dim=0),
|
106 |
+
left_hand_pose=i[j][75:120].unsqueeze_(dim=0),
|
107 |
+
right_hand_pose=i[j][120:165].unsqueeze_(dim=0),
|
108 |
+
return_verts=True
|
109 |
+
)
|
110 |
vertices.append(output.vertices.detach().cpu().numpy().squeeze())
|
111 |
+
vertices_list.append(np.asarray(vertices))
|
112 |
+
return vertices_list, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
global_orient = torch.tensor([3.0747, -0.0158, -0.0152])
|
115 |
|
|
|
116 |
def infer(g_body, g_face, smplx_model, rendertool, config, args):
|
117 |
+
betas = torch.zeros([1, 300], dtype=torch.float64).to(torch_device)
|
118 |
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
|
119 |
am_sr = 16000
|
|
|
120 |
cur_wav_file = args.audio_file
|
121 |
id = args.id
|
122 |
face = args.only_face
|
123 |
stand = args.stand
|
124 |
+
num_sample = args.num_sample
|
125 |
+
|
126 |
if face:
|
127 |
+
body_static = torch.zeros([1, 162], device=torch_device)
|
128 |
+
body_static[:, 6:9] = global_orient.reshape(1, 3).repeat(body_static.shape[0], 1)
|
129 |
|
130 |
result_list = []
|
131 |
|
132 |
+
pred_face = g_face.infer_on_audio(cur_wav_file, initial_pose=None, norm_stats=None, w_pre=False, frame=None, am=am, am_sr=am_sr)
|
133 |
+
pred_face = torch.tensor(pred_face).squeeze().to(torch_device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
if config.Data.pose.convert_to_6d:
|
136 |
pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6)
|
|
|
140 |
pred_jaw = pred_face[:, :3]
|
141 |
pred_face = pred_face[:, 3:]
|
142 |
|
143 |
+
id = torch.tensor([id], device=torch_device)
|
144 |
|
145 |
for i in range(num_sample):
|
146 |
+
pred_res = g_body.infer_on_audio(cur_wav_file, initial_pose=None, norm_stats=None, txgfile=None, id=id, var=None, fps=30, w_pre=False)
|
147 |
+
pred = torch.tensor(pred_res).squeeze().to(torch_device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
if pred.shape[0] < pred_face.shape[0]:
|
150 |
repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
|
|
|
152 |
else:
|
153 |
pred = pred[:pred_face.shape[0], :]
|
154 |
|
|
|
|
|
|
|
155 |
if config.Data.pose.convert_to_6d:
|
156 |
pred = pred.reshape(pred.shape[0], -1, 6)
|
157 |
+
pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred)).reshape(pred.shape[0], -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
pred = torch.cat([pred_jaw, pred, pred_face], dim=-1)
|
160 |
pred = part2full(pred, stand)
|
161 |
if face:
|
162 |
pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
result_list.append(pred)
|
165 |
|
|
|
166 |
vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)
|
|
|
167 |
result_list = [res.to('cpu') for res in result_list]
|
168 |
+
dict = np.concatenate(result_list, axis=0)
|
169 |
+
file_name = 'visualise/video/' + config.Log.name + '/' + cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1]
|
|
|
170 |
np.save(file_name, dict)
|
171 |
|
172 |
rendertool._render_sequences(cur_wav_file, vertices_list, stand=stand, face=face, whole_body=args.whole_body)
|
173 |
|
|
|
174 |
def main():
|
175 |
parser = parse_args()
|
176 |
args = parser.parse_args()
|
|
|
|
|
|
|
177 |
|
178 |
+
# Force correct config file
|
179 |
+
args.config_file = './config/body_pixel.json'
|
180 |
|
181 |
config = load_JsonConfig(args.config_file)
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
print('init model...')
|
184 |
+
generator = init_model(args.body_model_name, args.body_model_path, args, config)
|
185 |
+
generator_face = init_model(args.face_model_name, args.face_model_path, args, config)
|
186 |
+
|
187 |
+
print('init smplx model...')
|
188 |
+
smplx_model = smpl.create(
|
189 |
+
model_path='./visualise/',
|
190 |
+
model_type='smplx',
|
191 |
+
create_global_orient=True,
|
192 |
+
create_body_pose=True,
|
193 |
+
create_betas=True,
|
194 |
+
num_betas=300,
|
195 |
+
create_left_hand_pose=True,
|
196 |
+
create_right_hand_pose=True,
|
197 |
+
use_pca=False,
|
198 |
+
flat_hand_mean=False,
|
199 |
+
create_expression=True,
|
200 |
+
num_expression_coeffs=100,
|
201 |
+
num_pca_comps=12,
|
202 |
+
create_jaw_pose=True,
|
203 |
+
create_leye_pose=True,
|
204 |
+
create_reye_pose=True,
|
205 |
+
create_transl=False,
|
206 |
+
dtype=torch.float64
|
207 |
+
).to(torch_device)
|
208 |
+
|
|
|
209 |
print('init rendertool...')
|
210 |
rendertool = RenderTool('visualise/video/' + config.Log.name)
|
211 |
|
212 |
infer(generator, generator_face, smplx_model, rendertool, config, args)
|
213 |
|
|
|
214 |
if __name__ == '__main__':
|
215 |
main()
|