MrArray22 commited on
Commit
2d68c25
·
verified ·
1 Parent(s): 81917a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -30
app.py CHANGED
@@ -3,32 +3,107 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
 
 
 
 
 
6
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
 
10
 
11
  # --- Basic Agent Definition ---
12
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
  class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
 
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -55,16 +130,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
@@ -81,18 +156,36 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
81
  continue
82
  try:
83
  submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
 
 
 
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
 
 
96
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
  print(status_update)
98
 
@@ -162,20 +255,19 @@ with gr.Blocks() as demo:
162
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
 
166
  # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
  # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
@@ -183,14 +275,18 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
 
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
 
192
 
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from dotenv import load_dotenv
7
+ from openai import OpenAI
8
+ from tenacity import retry, stop_after_attempt, wait_exponential
9
+
10
+ # Load environment variables
11
+ load_dotenv()
12
 
13
  # (Keep Constants as is)
14
  # --- Constants ---
15
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
16
+ OPENAI_MODEL = "openai/gpt-4.1-nano" # or "gpt-3.5-turbo" based on your preference
17
+
18
 
19
  # --- Basic Agent Definition ---
20
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
21
  class BasicAgent:
22
  def __init__(self):
23
+ """Initialize the agent with OpenAI client and setup."""
24
+ print("BasicAgent initializing...")
25
+ self.client = OpenAI(api_key="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",base_url="https://models.github.ai/inference")
26
+ if not os.getenv("OPENAI_API_KEY"):
27
+ raise ValueError("OPENAI_API_KEY environment variable is not set")
28
+ print("BasicAgent initialized successfully.")
29
+
30
+ @retry(
31
+ stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10)
32
+ )
33
+ def _get_completion(self, prompt: str) -> str:
34
+ """Get completion from OpenAI with retry logic."""
35
+ try:
36
+ response = self.client.chat.completions.create(
37
+ model=OPENAI_MODEL,
38
+ messages=[
39
+ {
40
+ "role": "system",
41
+ "content": """You are a helpful AI assistant designed to answer questions from the GAIA benchmark.
42
+ Follow these guidelines:
43
+ 1. Provide clear, concise, and accurate answers
44
+ 2. If a question requires specific steps or calculations, show them clearly
45
+ 3. Format your response in a clean, readable way
46
+ 4. Be precise and avoid ambiguity
47
+ 5. If you're not completely sure about an answer, state your confidence level
48
+ Remember: Your answers will be evaluated through exact matching.""",
49
+ },
50
+ {"role": "user", "content": prompt},
51
+ ],
52
+ temperature=0.2, # Lower temperature for more consistent outputs
53
+ max_tokens=1000,
54
+ )
55
+ return response.choices[0].message.content.strip()
56
+ except Exception as e:
57
+ print(f"Error in OpenAI API call: {e}")
58
+ raise
59
+
60
+ def _preprocess_question(self, question: str) -> str:
61
+ """Preprocess the question to enhance clarity and context."""
62
+ enhanced_prompt = f"""Please analyze and answer the following question from the GAIA benchmark.
63
+ Question: {question}
64
+
65
+ Provide a clear, specific answer that can be evaluated through exact matching.
66
+ If the question requires multiple steps, please show your reasoning but ensure the final answer is clearly stated.
67
+ """
68
+ return enhanced_prompt
69
+
70
  def __call__(self, question: str) -> str:
71
+ """Process the question and return an answer."""
72
  print(f"Agent received question (first 50 chars): {question[:50]}...")
 
 
 
73
 
74
+ try:
75
+ # Preprocess the question
76
+ enhanced_prompt = self._preprocess_question(question)
77
+
78
+ # Get completion from OpenAI
79
+ response = self._get_completion(enhanced_prompt)
80
+
81
+ # Extract the final answer
82
+ # If the response contains multiple lines or explanations,
83
+ # we'll try to extract just the final answer
84
+ answer_lines = response.strip().split("\n")
85
+ final_answer = answer_lines[-1].strip()
86
+
87
+ # Log the response for debugging
88
+ print(f"Agent generated answer: {final_answer[:100]}...")
89
+
90
+ return final_answer
91
+
92
+ except Exception as e:
93
+ print(f"Error processing question: {e}")
94
+ return f"Error: {str(e)}"
95
+
96
+
97
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
98
  """
99
  Fetches all questions, runs the BasicAgent on them, submits all answers,
100
  and displays the results.
101
  """
102
  # --- Determine HF Space Runtime URL and Repo URL ---
103
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
104
 
105
  if profile:
106
+ username = f"{profile.username}"
107
  print(f"User logged in: {username}")
108
  else:
109
  print("User not logged in.")
 
130
  response.raise_for_status()
131
  questions_data = response.json()
132
  if not questions_data:
133
+ print("Fetched questions list is empty.")
134
+ return "Fetched questions list is empty or invalid format.", None
135
  print(f"Fetched {len(questions_data)} questions.")
136
  except requests.exceptions.RequestException as e:
137
  print(f"Error fetching questions: {e}")
138
  return f"Error fetching questions: {e}", None
139
  except requests.exceptions.JSONDecodeError as e:
140
+ print(f"Error decoding JSON response from questions endpoint: {e}")
141
+ print(f"Response text: {response.text[:500]}")
142
+ return f"Error decoding server response for questions: {e}", None
143
  except Exception as e:
144
  print(f"An unexpected error occurred fetching questions: {e}")
145
  return f"An unexpected error occurred fetching questions: {e}", None
 
156
  continue
157
  try:
158
  submitted_answer = agent(question_text)
159
+ answers_payload.append(
160
+ {"task_id": task_id, "submitted_answer": submitted_answer}
161
+ )
162
+ results_log.append(
163
+ {
164
+ "Task ID": task_id,
165
+ "Question": question_text,
166
+ "Submitted Answer": submitted_answer,
167
+ }
168
+ )
169
  except Exception as e:
170
+ print(f"Error running agent on task {task_id}: {e}")
171
+ results_log.append(
172
+ {
173
+ "Task ID": task_id,
174
+ "Question": question_text,
175
+ "Submitted Answer": f"AGENT ERROR: {e}",
176
+ }
177
+ )
178
 
179
  if not answers_payload:
180
  print("Agent did not produce any answers to submit.")
181
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
182
 
183
+ # 4. Prepare Submission
184
+ submission_data = {
185
+ "username": username.strip(),
186
+ "agent_code": agent_code,
187
+ "answers": answers_payload,
188
+ }
189
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
190
  print(status_update)
191
 
 
255
 
256
  run_button = gr.Button("Run Evaluation & Submit All Answers")
257
 
258
+ status_output = gr.Textbox(
259
+ label="Run Status / Submission Result", lines=5, interactive=False
260
+ )
261
  # Removed max_rows=10 from DataFrame constructor
262
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
263
 
264
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
265
 
266
  if __name__ == "__main__":
267
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
268
  # Check for SPACE_HOST and SPACE_ID at startup for information
269
  space_host_startup = os.getenv("SPACE_HOST")
270
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
271
 
272
  if space_host_startup:
273
  print(f"✅ SPACE_HOST found: {space_host_startup}")
 
275
  else:
276
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
277
 
278
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
279
  print(f"✅ SPACE_ID found: {space_id_startup}")
280
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
281
+ print(
282
+ f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
283
+ )
284
  else:
285
+ print(
286
+ "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
287
+ )
288
 
289
+ print("-" * (60 + len(" App Starting ")) + "\n")
290
 
291
  print("Launching Gradio Interface for Basic Agent Evaluation...")
292
+ demo.launch(debug=True, share=False)