MrPio commited on
Commit
5086d03
·
1 Parent(s): f92ec65

Initial commit

Browse files
Files changed (3) hide show
  1. app.py +73 -0
  2. cache/cached_inference_here +0 -0
  3. requirements.txt +11 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import io
3
+ import torch
4
+ from pathlib import Path
5
+ from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler
6
+ from PIL import Image, ImageOps
7
+ import gradio as gr
8
+
9
+ # ---- Model loading ----
10
+ CACHE_DIR = "./cache"
11
+ CNET_MODEL = "MrPio/Texture-Anything_CNet-SD15"
12
+ SD_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
13
+
14
+ controlnet = ControlNetModel.from_pretrained(
15
+ CNET_MODEL, cache_dir=CACHE_DIR, torch_dtype=torch.float16, local_files_only=True
16
+ )
17
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
18
+ SD_MODEL,
19
+ controlnet=controlnet,
20
+ cache_dir=CACHE_DIR,
21
+ torch_dtype=torch.float16,
22
+ safety_checker=None,
23
+ )
24
+
25
+ # speed & memory optimizations
26
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
27
+ pipe.enable_xformers_memory_efficient_attention() # if xformers installed
28
+ pipe.enable_model_cpu_offload()
29
+
30
+
31
+ def pil2hash(image: Image.Image) -> str:
32
+ buffer = io.BytesIO()
33
+ image.save(buffer, format="PNG")
34
+ image_bytes = buffer.getvalue()
35
+ return hashlib.sha256(image_bytes).hexdigest()
36
+
37
+
38
+ def caption2hash(caption: str) -> str:
39
+ return hashlib.sha256(caption.encode()).hexdigest()
40
+
41
+
42
+ # ---- Inference function ----
43
+ def infer(caption: str, condition_image: Image.Image, steps: int = 20, seed: int = 0, invert: bool = False):
44
+ img = condition_image.convert("RGB")
45
+ if invert:
46
+ img = ImageOps.invert(img)
47
+ cache_file = Path(f"inferences/{pil2hash(img)}_{caption2hash(caption)}.png")
48
+ if cache_file.exists():
49
+ return Image.open(cache_file)
50
+
51
+ generator = torch.manual_seed(seed)
52
+ output = pipe(prompt=caption, image=img, num_inference_steps=steps, generator=generator).images[0]
53
+ output.save(cache_file)
54
+ return output
55
+
56
+
57
+ # ---- Gradio UI + API ----
58
+ with gr.Blocks() as demo:
59
+ gr.Markdown("## ControlNet + Stable Diffusion 1.5")
60
+ with gr.Row():
61
+ txt = gr.Textbox(label="Prompt", placeholder="Describe the texture...")
62
+ cond = gr.Image(type="pil", label="Condition Image")
63
+ with gr.Row():
64
+ steps = gr.Slider(1, 50, value=20, label="Inference Steps")
65
+ seed = gr.Number(value=0, label="Seed (0 for random)")
66
+ inv = gr.Checkbox(label="Invert UV colors?")
67
+ btn = gr.Button("Generate")
68
+ out = gr.Image(label="Output")
69
+
70
+ btn.click(fn=infer, inputs=[txt, cond, steps, seed, inv], outputs=out)
71
+
72
+ # enable the standard gradio REST API (/run/predict)
73
+ demo.launch(server_name="0.0.0.0", server_port=7860)
cache/cached_inference_here ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accelerate
2
+ diffusers
3
+ huggingface-hub
4
+ numpy<2
5
+ requests
6
+ safetensors
7
+ torch
8
+ torchvision
9
+ tqdm
10
+ xformers
11
+ gradio