Spaces:
Sleeping
Sleeping
Delete quiz_processing.py
Browse files- quiz_processing.py +0 -231
quiz_processing.py
DELETED
@@ -1,231 +0,0 @@
|
|
1 |
-
import re
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
-
from transformers import AutoTokenizer
|
6 |
-
from huggingface_hub import login
|
7 |
-
|
8 |
-
hf_token = os.environ.get('HF_TOKEN', None)
|
9 |
-
login(token=hf_token)
|
10 |
-
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base", use_auth_token=hf_token)
|
12 |
-
|
13 |
-
def clean_text(text):
|
14 |
-
text = re.sub(r'\[speaker_\d+\]', '', text)
|
15 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
16 |
-
return text
|
17 |
-
|
18 |
-
def split_text_by_tokens(text, max_tokens=12000):
|
19 |
-
text = clean_text(text)
|
20 |
-
tokens = tokenizer.encode(text)
|
21 |
-
|
22 |
-
if len(tokens) <= max_tokens:
|
23 |
-
return [text]
|
24 |
-
|
25 |
-
split_point = len(tokens) // 2
|
26 |
-
|
27 |
-
sentences = re.split(r'(?<=[.!?])\s+', text)
|
28 |
-
|
29 |
-
first_half = []
|
30 |
-
second_half = []
|
31 |
-
|
32 |
-
current_tokens = 0
|
33 |
-
for sentence in sentences:
|
34 |
-
sentence_tokens = len(tokenizer.encode(sentence))
|
35 |
-
|
36 |
-
if current_tokens + sentence_tokens <= split_point:
|
37 |
-
first_half.append(sentence)
|
38 |
-
current_tokens += sentence_tokens
|
39 |
-
else:
|
40 |
-
second_half.append(sentence)
|
41 |
-
|
42 |
-
return [" ".join(first_half), " ".join(second_half)]
|
43 |
-
|
44 |
-
def analyze_segment_with_gemini(segment_text, google_api_key, course_name="", section_name="", lesson_name=""):
|
45 |
-
os.environ["GOOGLE_API_KEY"] = google_api_key
|
46 |
-
|
47 |
-
llm = ChatGoogleGenerativeAI(
|
48 |
-
model="gemini-2.0-flash",
|
49 |
-
temperature=0.7,
|
50 |
-
max_tokens=None,
|
51 |
-
timeout=None,
|
52 |
-
max_retries=3
|
53 |
-
)
|
54 |
-
|
55 |
-
prompt = f"""
|
56 |
-
Analyze the following text and identify distinct segments within it and do text segmentation:
|
57 |
-
1. Segments should be STRICTLY max=15
|
58 |
-
2. For each segment/topic you identify:
|
59 |
-
- Provide a SPECIFIC and UNIQUE topic name (3-5 words) that clearly differentiates it from other segments
|
60 |
-
- List 3-5 key concepts discussed in that segment (be precise and avoid repetition between segments)
|
61 |
-
- Write a brief summary of that segment (3-5 sentences)
|
62 |
-
- Create 5 high-quality, meaningful quiz questions based DIRECTLY on the content in that segment only
|
63 |
-
- Questions and answers should be only from the content of the segment
|
64 |
-
For each quiz question:
|
65 |
-
- Create one correct answer that comes DIRECTLY from the text
|
66 |
-
- Create two plausible but incorrect answers
|
67 |
-
- IMPORTANT: Ensure all answer options have similar length (± 3 words)
|
68 |
-
- Ensure the correct answer is clearly indicated with a ✓ symbol
|
69 |
-
- Questions should **require actual understanding**, NOT just basic fact recall.
|
70 |
-
- Questions Are **non-trivial**, encourage deeper thinking, and **avoid surface-level facts**.
|
71 |
-
- Are **directly based on the segment's content** (not inferred from the summary).
|
72 |
-
- Do **not include questions about document structure** (e.g., title, number of paragraphs).
|
73 |
-
- Do **not generate overly generic or obvious questions** (e.g., "What is mentioned in the text?").
|
74 |
-
- Focus on **core ideas, logical reasoning, and conceptual understanding**
|
75 |
-
|
76 |
-
ADDITIONAL REQUIREMENT:
|
77 |
-
- **First, detect the language of the original text.**
|
78 |
-
- **Generate ALL output (topic names, key concepts, summaries, and quizzes) in the same language as the original text.**
|
79 |
-
- If the text is in Russian, generate all responses in Russian.
|
80 |
-
- If the text is in another language, generate responses in that original language.
|
81 |
-
|
82 |
-
|
83 |
-
COURSE INFORMATION:
|
84 |
-
- Course Name: {course_name}
|
85 |
-
- Section Name: {section_name}
|
86 |
-
- Lesson Name: {lesson_name}
|
87 |
-
- Use this information to contextualize the quiz and make it relevant to the educational content.
|
88 |
-
- Include this information in the JSON response structure.
|
89 |
-
|
90 |
-
Text:
|
91 |
-
{segment_text}
|
92 |
-
|
93 |
-
Format your response as JSON with the following structure:
|
94 |
-
{{
|
95 |
-
"course_info": {{
|
96 |
-
"course_name": "{course_name}",
|
97 |
-
"section_name": "{section_name}",
|
98 |
-
"lesson_name": "{lesson_name}"
|
99 |
-
}},
|
100 |
-
"segments": [
|
101 |
-
{{
|
102 |
-
"topic_name": "Unique and Specific Topic Name",
|
103 |
-
"key_concepts": ["concept1", "concept2", "concept3"],
|
104 |
-
"summary": "Brief summary of this segment.",
|
105 |
-
"quiz_questions": [
|
106 |
-
{{
|
107 |
-
"question": "Question text?",
|
108 |
-
"options": [
|
109 |
-
{{
|
110 |
-
"text": "Option A",
|
111 |
-
"correct": false
|
112 |
-
}},
|
113 |
-
{{
|
114 |
-
"text": "Option B",
|
115 |
-
"correct": true
|
116 |
-
}},
|
117 |
-
{{
|
118 |
-
"text": "Option C",
|
119 |
-
"correct": false
|
120 |
-
}}
|
121 |
-
]
|
122 |
-
}}
|
123 |
-
]
|
124 |
-
}}
|
125 |
-
]
|
126 |
-
}}
|
127 |
-
IMPORTANT: Each segment must have a DISTINCT topic name that clearly differentiates it from others.
|
128 |
-
- **Do NOT repeat** key concepts across multiple segments unless absolutely necessary.
|
129 |
-
- **Ensure the quiz questions challenge the reader** and **are not easily guessable**.
|
130 |
-
- **Tailor the content to fit within the context of the specified course, section, and lesson.**
|
131 |
-
"""
|
132 |
-
|
133 |
-
try:
|
134 |
-
response = llm.invoke(prompt)
|
135 |
-
response_text = response.content
|
136 |
-
|
137 |
-
json_match = re.search(r'\{[\s\S]*\}', response_text)
|
138 |
-
if json_match:
|
139 |
-
return json.loads(json_match.group(0))
|
140 |
-
else:
|
141 |
-
return json.loads(response_text)
|
142 |
-
except Exception as e:
|
143 |
-
print(f"Error in Gemini analysis: {e}")
|
144 |
-
return {
|
145 |
-
"course_info": {
|
146 |
-
"course_name": course_name,
|
147 |
-
"section_name": section_name,
|
148 |
-
"lesson_name": lesson_name
|
149 |
-
},
|
150 |
-
"segments": [
|
151 |
-
{
|
152 |
-
"topic_name": "Analysis Error",
|
153 |
-
"key_concepts": ["Could not process text"],
|
154 |
-
"summary": "An error occurred during text analysis.",
|
155 |
-
"quiz_questions": []
|
156 |
-
}
|
157 |
-
]
|
158 |
-
}
|
159 |
-
|
160 |
-
def format_quiz_for_display(results):
|
161 |
-
output = []
|
162 |
-
|
163 |
-
if "course_info" in results:
|
164 |
-
course_info = results["course_info"]
|
165 |
-
output.append(f"{'='*40}")
|
166 |
-
output.append(f"COURSE: {course_info.get('course_name', 'N/A')}")
|
167 |
-
output.append(f"SECTION: {course_info.get('section_name', 'N/A')}")
|
168 |
-
output.append(f"LESSON: {course_info.get('lesson_name', 'N/A')}")
|
169 |
-
output.append(f"{'='*40}\n")
|
170 |
-
|
171 |
-
segments = results.get("segments", [])
|
172 |
-
for i, segment in enumerate(segments):
|
173 |
-
topic = segment["topic_name"]
|
174 |
-
segment_num = i + 1
|
175 |
-
output.append(f"\n\n{'='*40}")
|
176 |
-
output.append(f"SEGMENT {segment_num}: {topic}")
|
177 |
-
output.append(f"{'='*40}\n")
|
178 |
-
output.append("KEY CONCEPTS:")
|
179 |
-
for concept in segment["key_concepts"]:
|
180 |
-
output.append(f"• {concept}")
|
181 |
-
output.append("\nSUMMARY:")
|
182 |
-
output.append(segment["summary"])
|
183 |
-
output.append("\nQUIZ QUESTIONS:")
|
184 |
-
for i, q in enumerate(segment["quiz_questions"]):
|
185 |
-
output.append(f"\n{i+1}. {q['question']}")
|
186 |
-
for j, option in enumerate(q['options']):
|
187 |
-
letter = chr(97 + j).upper()
|
188 |
-
correct_marker = " ✓" if option["correct"] else ""
|
189 |
-
output.append(f" {letter}. {option['text']}{correct_marker}")
|
190 |
-
return "\n".join(output)
|
191 |
-
|
192 |
-
|
193 |
-
def save_quiz_json(results):
|
194 |
-
json_filename = "generated_quiz.json"
|
195 |
-
with open(json_filename, "w", encoding="utf-8") as f:
|
196 |
-
json.dump(results, f, indent=2)
|
197 |
-
return json_filename
|
198 |
-
|
199 |
-
def process_text(transcript_text, google_api_key, course_name="", section_name="", lesson_name=""):
|
200 |
-
if not transcript_text:
|
201 |
-
return "No text to analyze", None, None
|
202 |
-
text_parts = split_text_by_tokens(transcript_text)
|
203 |
-
|
204 |
-
all_results = {
|
205 |
-
"course_info": {
|
206 |
-
"course_name": course_name,
|
207 |
-
"section_name": section_name,
|
208 |
-
"lesson_name": lesson_name
|
209 |
-
},
|
210 |
-
"segments": []
|
211 |
-
}
|
212 |
-
segment_counter = 1
|
213 |
-
|
214 |
-
for part in text_parts:
|
215 |
-
analysis = analyze_segment_with_gemini(part, google_api_key, course_name, section_name, lesson_name)
|
216 |
-
|
217 |
-
if "segments" in analysis:
|
218 |
-
for segment in analysis["segments"]:
|
219 |
-
segment["segment_number"] = segment_counter
|
220 |
-
all_results["segments"].append(segment)
|
221 |
-
segment_counter += 1
|
222 |
-
|
223 |
-
formatted_quiz = format_quiz_for_display(all_results)
|
224 |
-
|
225 |
-
quiz_filename = "generated_quiz.txt"
|
226 |
-
with open(quiz_filename, "w", encoding="utf-8") as f:
|
227 |
-
f.write(formatted_quiz)
|
228 |
-
|
229 |
-
json_filename = save_quiz_json(all_results)
|
230 |
-
|
231 |
-
return formatted_quiz, quiz_filename, json_filename
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|