File size: 9,375 Bytes
9859bf3
 
 
 
 
 
 
 
 
 
 
 
1b98e0e
9859bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648d16e
9859bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import pandas as pd
import numpy as np
import re
import json
import os
from io import StringIO
from PyPDF2 import PdfReader
from docx import Document as DocxDocument
from llama_index.core.text_splitter import SentenceSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sklearn.metrics.pairwise import cosine_similarity
from llama_index.core.schema import Document
from scripts.config import *


def extract_text_from_pdf(file_path):
    text = ""
    with open(file_path, 'rb') as file:
        pdf_reader = PdfReader(file)
        for page in pdf_reader.pages:
            text += page.extract_text() + "\n"
    return text

def extract_text_from_docx(file_path):
    doc = DocxDocument(file_path)
    text = ""
    for paragraph in doc.paragraphs:
        text += paragraph.text + "\n"
    return text

def extract_text_from_txt(file_path):
    encodings = ['utf-8', 'windows-1251', 'cp1252', 'iso-8859-1']
    for encoding in encodings:
        try:
            with open(file_path, 'r', encoding=encoding) as file:
                return file.read()
        except UnicodeDecodeError:
            continue
    
    with open(file_path, 'r', encoding='utf-8', errors='ignore') as file:
        return file.read()

def extract_text_from_csv(file_path):
    df = pd.read_csv(file_path, encoding='utf-8')
    text = ""
    for column in df.columns:
        text += f"{column}: {' '.join(df[column].astype(str).tolist())}\n"
    return text

def extract_text_from_xlsx(file_path):
    df = pd.read_excel(file_path)
    text = ""
    for column in df.columns:
        text += f"{column}: {' '.join(df[column].astype(str).tolist())}\n"
    return text

def extract_text_from_json(file_path):
    with open(file_path, 'r', encoding='utf-8') as file:
        data = json.load(file)
    
    def flatten_json(obj, prefix=""):
        text = ""
        if isinstance(obj, dict):
            for key, value in obj.items():
                new_key = f"{prefix}.{key}" if prefix else key
                text += flatten_json(value, new_key)
        elif isinstance(obj, list):
            for i, item in enumerate(obj):
                new_key = f"{prefix}[{i}]" if prefix else f"[{i}]"
                text += flatten_json(item, new_key)
        else:
            text += f"{prefix}: {str(obj)}\n"
        return text
    
    return flatten_json(data)

def extract_text_from_file(file_path):
    file_extension = os.path.splitext(file_path)[1].lower()
    
    extractors = {
        '.pdf': extract_text_from_pdf,
        '.docx': extract_text_from_docx,
        '.txt': extract_text_from_txt,
        '.csv': extract_text_from_csv,
        '.xlsx': extract_text_from_xlsx,
        '.xls': extract_text_from_xlsx,
        '.json': extract_text_from_json
    }
    
    if file_extension in extractors:
        return extractors[file_extension](file_path)
    else:
        raise ValueError(f"Unsupported file format: {file_extension}")

def preprocess_text(text):
    if pd.isna(text):
        return ""
    text = str(text)

    text = re.sub(r'(^\s*[\.\_]{3,}\s*$)', '', text, flags=re.MULTILINE)
    text = re.sub(r'(^\s*\d+\s*[\.\_]{3,}\s*$)', '', text, flags=re.MULTILINE)
    text = re.sub(r'[\.\_]{5,}', ' ', text)
    
    text = re.sub(r'№\s*[_\s]*от\s*«[_\s]*»\s*[_\s]*\.{0,}', '', text, flags=re.IGNORECASE)
    
    text = re.sub(r'\n{3,}', '\n\n', text)
    text = re.sub(r'[ \t]+', ' ', text)
    text = re.sub(r'—{2,}', '—', text)
    text = re.sub(r'_{2,}', '', text)

    text = text.strip()
    return text

def create_initial_chunks(text):
    sentence_splitter = SentenceSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
    return sentence_splitter.split_text(text)

def get_chunk_embeddings(chunks):
    embeddings_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL)
    chunk_embeddings = []
    for chunk in chunks:
        embedding = embeddings_model.get_text_embedding(chunk)
        chunk_embeddings.append(embedding)
    return np.array(chunk_embeddings)

def merge_similar_chunks(initial_chunks, similarity_matrix):
    merged_chunks = []
    used_indices = set()
    
    for i, chunk in enumerate(initial_chunks):
        if i in used_indices:
            continue
        
        current_chunk = chunk
        current_indices = [i]
        
        for j in range(i + 1, len(initial_chunks)):
            if j in used_indices:
                continue
            
            if similarity_matrix[i][j] > SIMILARITY_THRESHOLD:
                combined_text = current_chunk + " " + initial_chunks[j]
                if len(combined_text) <= MAX_CHUNK_SIZE:
                    current_chunk = combined_text
                    current_indices.append(j)
        
        if len(current_chunk) >= MIN_CHUNK_SIZE:
            merged_chunks.append(current_chunk)
            used_indices.update(current_indices)
    
    return merged_chunks

def extract_sections_from_chunk(chunk_text):
    section_patterns = [
        r'^(\d+(?:\.\d+)*)\s+([А-Яа-я][А-Яа-я\s,\-\(\)\"\']+)',
        r'^([А-Я][А-Я\s]+)\s*\n',
        r'^(\d+)\.\s*([А-Яа-я][А-Яа-я\s,\-\(\)\"\']+)',
        r'Статья\s+(\d+(?:\.\d+)?)\.\s*([А-Яа-я][А-Яа-я\s,\-\(\)\"\']+)',
        r'Пункт\s+(\d+(?:\.\d+)?)\.\s*([А-Яа-я][А-Яа-я\s,\-\(\)\"\']+)',
    ]
    
    current_section = ''
    current_subsection = ''
    
    for pattern in section_patterns:
        matches = re.findall(pattern, chunk_text, re.MULTILINE | re.IGNORECASE)
        for match in matches:
            if len(match) == 2:
                section_num = match[0]
                section_title = match[1].strip()
                
                if '.' in section_num and len(section_num.split('.')) > 1:
                    current_subsection = f"{section_num} {section_title}"
                else:
                    current_section = f"{section_num} {section_title}"
                break
        if current_section or current_subsection:
            break
    
    return current_section, current_subsection

def process_single_document(file_path):
    filename = os.path.basename(file_path)
    
    text = extract_text_from_file(file_path)
    text = preprocess_text(text)
    
    if not text or len(text.strip()) < 50:
        return []
    
    initial_chunks = create_initial_chunks(text)
    
    if len(initial_chunks) < 2:
        merged_chunks = initial_chunks
    else:
        try:
            chunk_embeddings = get_chunk_embeddings(initial_chunks)
            similarity_matrix = cosine_similarity(chunk_embeddings)
            merged_chunks = merge_similar_chunks(initial_chunks, similarity_matrix)
        except Exception as e:
            print(f"Error in similarity processing for {filename}: {str(e)}")
            merged_chunks = initial_chunks
    
    results = []
    for i, chunk_text in enumerate(merged_chunks):
        current_section, current_subsection = extract_sections_from_chunk(chunk_text)
        
        results.append({
            'document_id': filename,
            'section': current_section,
            'subsection': current_subsection,
            'chunk_text': chunk_text,
            'chunk_length': len(chunk_text),
            'chunk_id': f"{filename}_chunk_{i}",
            'txt_file_id': filename,
            'file_link': file_path
        })
    
    return results

def process_multiple_documents(file_paths):
    all_results = []
    
    for file_path in file_paths:
        try:
            doc_results = process_single_document(file_path)
            all_results.extend(doc_results)
            print(f"Processed {file_path}: {len(doc_results)} chunks created")
        except Exception as e:
            print(f"Error processing {file_path}: {str(e)}")
    
    return all_results

def create_llama_documents(processed_chunks):
    documents = []
    
    for chunk_data in processed_chunks:
        metadata = {
            'chunk_id': chunk_data['chunk_id'],
            'document_id': chunk_data['document_id'],
            'section': chunk_data['section'] if chunk_data['section'] else '',
            'subsection': chunk_data['subsection'] if chunk_data['subsection'] else '',
            'chunk_length': chunk_data['chunk_length'],
            'txt_file_id': chunk_data.get('txt_file_id', chunk_data['document_id']),
            'file_link': chunk_data.get('file_link', chunk_data['file_link'] if 'file_link' in chunk_data else '')
        }
        
        doc = Document(
            text=chunk_data['chunk_text'], 
            metadata=metadata,
            id_=chunk_data['chunk_id']
        )
        documents.append(doc)
    
    return documents

def save_processed_chunks(processed_chunks, output_path='processed_data/processed_chunks.csv'):
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    df_chunks = pd.DataFrame(processed_chunks)
    df_chunks.to_csv(output_path, index=False, encoding='utf-8')
    return df_chunks

def load_processed_chunks(input_path='processed_data/processed_chunks.csv'):
    return pd.read_csv(input_path, encoding='utf-8')