AIEXP_RAG_1 / scripts /document_processor.py
MrSimple07's picture
fixed file_path problem + added app_1.py + added possible relevancy check first
648d16e
raw
history blame
9.38 kB
import pandas as pd
import numpy as np
import re
import json
import os
from io import StringIO
from PyPDF2 import PdfReader
from docx import Document as DocxDocument
from llama_index.core.text_splitter import SentenceSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sklearn.metrics.pairwise import cosine_similarity
from llama_index.core.schema import Document
from scripts.config import *
def extract_text_from_pdf(file_path):
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
def extract_text_from_docx(file_path):
doc = DocxDocument(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
def extract_text_from_txt(file_path):
encodings = ['utf-8', 'windows-1251', 'cp1252', 'iso-8859-1']
for encoding in encodings:
try:
with open(file_path, 'r', encoding=encoding) as file:
return file.read()
except UnicodeDecodeError:
continue
with open(file_path, 'r', encoding='utf-8', errors='ignore') as file:
return file.read()
def extract_text_from_csv(file_path):
df = pd.read_csv(file_path, encoding='utf-8')
text = ""
for column in df.columns:
text += f"{column}: {' '.join(df[column].astype(str).tolist())}\n"
return text
def extract_text_from_xlsx(file_path):
df = pd.read_excel(file_path)
text = ""
for column in df.columns:
text += f"{column}: {' '.join(df[column].astype(str).tolist())}\n"
return text
def extract_text_from_json(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
def flatten_json(obj, prefix=""):
text = ""
if isinstance(obj, dict):
for key, value in obj.items():
new_key = f"{prefix}.{key}" if prefix else key
text += flatten_json(value, new_key)
elif isinstance(obj, list):
for i, item in enumerate(obj):
new_key = f"{prefix}[{i}]" if prefix else f"[{i}]"
text += flatten_json(item, new_key)
else:
text += f"{prefix}: {str(obj)}\n"
return text
return flatten_json(data)
def extract_text_from_file(file_path):
file_extension = os.path.splitext(file_path)[1].lower()
extractors = {
'.pdf': extract_text_from_pdf,
'.docx': extract_text_from_docx,
'.txt': extract_text_from_txt,
'.csv': extract_text_from_csv,
'.xlsx': extract_text_from_xlsx,
'.xls': extract_text_from_xlsx,
'.json': extract_text_from_json
}
if file_extension in extractors:
return extractors[file_extension](file_path)
else:
raise ValueError(f"Unsupported file format: {file_extension}")
def preprocess_text(text):
if pd.isna(text):
return ""
text = str(text)
text = re.sub(r'(^\s*[\.\_]{3,}\s*$)', '', text, flags=re.MULTILINE)
text = re.sub(r'(^\s*\d+\s*[\.\_]{3,}\s*$)', '', text, flags=re.MULTILINE)
text = re.sub(r'[\.\_]{5,}', ' ', text)
text = re.sub(r'№\s*[_\s]*от\s*«[_\s]*»\s*[_\s]*\.{0,}', '', text, flags=re.IGNORECASE)
text = re.sub(r'\n{3,}', '\n\n', text)
text = re.sub(r'[ \t]+', ' ', text)
text = re.sub(r'—{2,}', '—', text)
text = re.sub(r'_{2,}', '', text)
text = text.strip()
return text
def create_initial_chunks(text):
sentence_splitter = SentenceSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
return sentence_splitter.split_text(text)
def get_chunk_embeddings(chunks):
embeddings_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL)
chunk_embeddings = []
for chunk in chunks:
embedding = embeddings_model.get_text_embedding(chunk)
chunk_embeddings.append(embedding)
return np.array(chunk_embeddings)
def merge_similar_chunks(initial_chunks, similarity_matrix):
merged_chunks = []
used_indices = set()
for i, chunk in enumerate(initial_chunks):
if i in used_indices:
continue
current_chunk = chunk
current_indices = [i]
for j in range(i + 1, len(initial_chunks)):
if j in used_indices:
continue
if similarity_matrix[i][j] > SIMILARITY_THRESHOLD:
combined_text = current_chunk + " " + initial_chunks[j]
if len(combined_text) <= MAX_CHUNK_SIZE:
current_chunk = combined_text
current_indices.append(j)
if len(current_chunk) >= MIN_CHUNK_SIZE:
merged_chunks.append(current_chunk)
used_indices.update(current_indices)
return merged_chunks
def extract_sections_from_chunk(chunk_text):
section_patterns = [
r'^(\d+(?:\.\d+)*)\s+([А-Яа-я][А-Яа-я\s,\-\(\)\"\']+)',
r'^([А-Я][А-Я\s]+)\s*\n',
r'^(\d+)\.\s*([А-Яа-я][А-Яа-я\s,\-\(\)\"\']+)',
r'Статья\s+(\d+(?:\.\d+)?)\.\s*([А-Яа-я][А-Яа-я\s,\-\(\)\"\']+)',
r'Пункт\s+(\d+(?:\.\d+)?)\.\s*([А-Яа-я][А-Яа-я\s,\-\(\)\"\']+)',
]
current_section = ''
current_subsection = ''
for pattern in section_patterns:
matches = re.findall(pattern, chunk_text, re.MULTILINE | re.IGNORECASE)
for match in matches:
if len(match) == 2:
section_num = match[0]
section_title = match[1].strip()
if '.' in section_num and len(section_num.split('.')) > 1:
current_subsection = f"{section_num} {section_title}"
else:
current_section = f"{section_num} {section_title}"
break
if current_section or current_subsection:
break
return current_section, current_subsection
def process_single_document(file_path):
filename = os.path.basename(file_path)
text = extract_text_from_file(file_path)
text = preprocess_text(text)
if not text or len(text.strip()) < 50:
return []
initial_chunks = create_initial_chunks(text)
if len(initial_chunks) < 2:
merged_chunks = initial_chunks
else:
try:
chunk_embeddings = get_chunk_embeddings(initial_chunks)
similarity_matrix = cosine_similarity(chunk_embeddings)
merged_chunks = merge_similar_chunks(initial_chunks, similarity_matrix)
except Exception as e:
print(f"Error in similarity processing for {filename}: {str(e)}")
merged_chunks = initial_chunks
results = []
for i, chunk_text in enumerate(merged_chunks):
current_section, current_subsection = extract_sections_from_chunk(chunk_text)
results.append({
'document_id': filename,
'section': current_section,
'subsection': current_subsection,
'chunk_text': chunk_text,
'chunk_length': len(chunk_text),
'chunk_id': f"{filename}_chunk_{i}",
'txt_file_id': filename,
'file_link': file_path
})
return results
def process_multiple_documents(file_paths):
all_results = []
for file_path in file_paths:
try:
doc_results = process_single_document(file_path)
all_results.extend(doc_results)
print(f"Processed {file_path}: {len(doc_results)} chunks created")
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
return all_results
def create_llama_documents(processed_chunks):
documents = []
for chunk_data in processed_chunks:
metadata = {
'chunk_id': chunk_data['chunk_id'],
'document_id': chunk_data['document_id'],
'section': chunk_data['section'] if chunk_data['section'] else '',
'subsection': chunk_data['subsection'] if chunk_data['subsection'] else '',
'chunk_length': chunk_data['chunk_length'],
'txt_file_id': chunk_data.get('txt_file_id', chunk_data['document_id']),
'file_link': chunk_data.get('file_link', chunk_data['file_link'] if 'file_link' in chunk_data else '')
}
doc = Document(
text=chunk_data['chunk_text'],
metadata=metadata,
id_=chunk_data['chunk_id']
)
documents.append(doc)
return documents
def save_processed_chunks(processed_chunks, output_path='processed_data/processed_chunks.csv'):
os.makedirs(os.path.dirname(output_path), exist_ok=True)
df_chunks = pd.DataFrame(processed_chunks)
df_chunks.to_csv(output_path, index=False, encoding='utf-8')
return df_chunks
def load_processed_chunks(input_path='processed_data/processed_chunks.csv'):
return pd.read_csv(input_path, encoding='utf-8')