import os import google.generativeai as genai from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.google_genai import GoogleGenAI from llama_index.core import Settings from llama_index.core.llms import ChatMessage, MessageRole import os EMBEDDING_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" RETRIEVER_TOP_K = 10 RETRIEVER_SIMILARITY_CUTOFF = 0.7 RAG_FILES_DIR = "processed_data" PROCESSED_DATA_FILE = "processed_data/processed_chunks.csv" UPLOAD_FOLDER = "UPLOADED_DOCUMENTS" PROCESSED_DATA_FILE = "processed_data/processed_chunks.csv" INDEX_STATE_FILE = "processed_data/index_store.json" RAG_FILES_DIR = "rag_files" GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY') LLM_MODEL = "gemini-2.5-flash" CHUNK_SIZE = 1024 CHUNK_OVERLAP = 256 MAX_CHUNK_SIZE = 2048 MIN_CHUNK_SIZE = 750 SIMILARITY_THRESHOLD = 0.7 RETRIEVER_TOP_K = 15 RETRIEVER_SIMILARITY_CUTOFF = 0.7 CUSTOM_PROMPT = """ You are a highly specialized Document Analysis Assistant (AIEXP). Your purpose is to provide precise, accurate, and contextually relevant answers by analyzing a set of normal regulatory documents (НД). Your responses must be entirely based on the provided context, without any external knowledge or assumptions. Core Tasks: Based on the user's query, perform one of the following tasks: - Information Retrieval: Find and present specific information. - Summarization: Provide a concise summary of a document or a section. - Semantic Analysis: Compare a provided text against the requirements of the ND. - Action Planning: Create a step-by-step plan based on ND requirements. Strict Rules for Response Generation: 1. Source Attribution is Mandatory: Every answer must explicitly cite its source from the provided context. Use one of the following formats: - For content from a specific section/subsection: Согласно разделу [X] и подразделу [X.X]: [Ваш ответ] - For content that is not part of a specific subsection (e.g., from a general section, table, or figure): Согласно [Название документа] - [Номер и наименование пункта/таблицы/изображения]: [Ваш ответ] - If the source chunk has metadata for both section and subsection, always include both. - If the source chunk has only a section, use the format Согласно разделу [X]: [Ваш ответ]. 2. No Hallucinations: If the requested information is not explicitly found within the provided context, you must state that the information is not available. Do not attempt to infer, guess, or create a response. The correct response in this case is: Информация по вашему запросу не была найдена в нормативной документации. 3. Use ND Language: When possible, use terminology and phrasing directly from the ND to maintain accuracy and fidelity to the source document. 4. Prioritize Precision: When answering, provide the most specific and direct information possible, avoiding vague or overly broad summaries unless explicitly asked to summarize. Context: {context_str} Question: {query_str} Answer: """ def setup_llm_settings(): Settings.embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL) Settings.llm = GoogleGenAI(model=LLM_MODEL, api_key=GOOGLE_API_KEY) Settings.llm.system_prompt = CUSTOM_PROMPT LLM_MODEL_PREPROCESS = "gemini-1.5-flash" def preprocess_query_with_context(user_query, chat_history=None, llm=None): if not chat_history: return user_query if not llm: llm = GoogleGenAI(model=LLM_MODEL_PREPROCESS, temperature=0.1) # Format chat history into a string for the prompt history_context = "\n".join([ f"User: {item['user']}\nAssistant: {item['assistant']}" for item in chat_history[-3:] # Consider only the last 3 exchanges for conciseness ]) preprocessing_prompt = f"""Analyze the user's current question in the context of their chat history and improve it for better document retrieval. Chat History: {history_context} Current Question: {user_query} Tasks: 1. If the question refers to previous context, make it self-contained. 2. Add relevant keywords that would help find documents. 3. Maintain the legal/regulatory focus. 4. Keep it concise but specific. Return ONLY the improved question: """ try: messages = [ChatMessage(role=MessageRole.USER, content=preprocessing_prompt)] response = llm.chat(messages) improved_query = response.message.content.strip() # Fallback to the original query if the preprocessing fails or provides an overly long response if len(improved_query) > len(user_query) * 3 or not improved_query: return user_query return improved_query except Exception as e: print(f"Query preprocessing failed: {e}") return user_query def create_chat_context_prompt(base_response, chat_history=None): if not chat_history: return base_response base_aware_response = base_response if len(chat_history) > 0: last_exchange = chat_history[-1] if any(keyword in last_exchange['user'].lower() for keyword in ['закон', 'кодекс', 'статья']): # Add a conversational prefix base_aware_response = f"Продолжая тему нормативных документов: {base_response}" return base_aware_response